

Democratizing Data Science through Interactive Curation of ML Pipelines

Zeyuan Shang, Emanuel Zgraggen, Benedetto Buratti, Ferdinand Kossmann, Philipp Eichmann, Yeounoh Chung, Carsten Binnig, Eli Upfal, Tim Kraska

Data Science is Difficult for Domain Experts

- Data science requires many skills: programming, statistical, machine learning
- Domain experts don't have such backgrounds while programmers or researchers don't have domain knowledge

DARPA Data-Driven Discovery of Model (D3M) AutoML Competition

	Solved Problems	% of Tasks Beat Baseline
Alpine Meadow	100%	80%
System 2	40%	27%
System 3	40%	13%
DARPA Baseline	100%	0%
System 4	20%	7%
System 5	87%	47%
System 6	27%	7%
System 7	60%	20%
System 8	87%	53%
System 9	60%	20%
System 10	60%	20%

- Goal: develop automated model discovery systems for domain experts
- Evaluation on real world datasets, including structured classification and regression task, image classification and measuring, audio transcription, among others
- System 2-10 are competing teams from UC Berkeley, Stanford, NYU,

We emulate a Data Scientist

Can you predict the sales next month for me?

"What modeling options do I have?"

DATA SCIENTIST

How can I get some quick results?

Overview of Alpine Meadow

"What modeling options do I have?"

Rule-based Search Space Expansion

"What should I try first?"

Preselection Based On Past Experience (Learned Knowledge Base)

How can I get some quick results?

Adaptive sampling-based pruning

Overview of Alpine Meadow

"What modeling options do I have?"

Rule-based Search Space Expansion

"What should I try first?"

Preselection Based On Past Experience (Learned Knowledge Base)

How can I get some quick results?

Adaptive sampling-based pruning

Not Your Normal AutoML–Tool: Built For Interactive Results

Rule-Based Search Space Expansion

- Rules added by Experts and learned from thousands of publicly available pipelines (Kaggle and OpenML)
- Example rules:
 - unscaled numeric feature \rightarrow MinMaxScaler, Mean Normalizer
 - categorical feature \rightarrow use encoder (label or one hot)
 - classification \rightarrow SVM with default learning rate of 0.001 1.00
 - Image classification -> pre-trained neural network (transfer learning)

Looking into the Search Space

Every box represents a full logical pipeline Including feature engineering, preprocessing and model family (e.g., random forest, SVM,...)

Looking into the Search Space

Overview of Alpine Meadow

"What modeling options do I have?"

Rule-based Search Space Expansion

"What should I try first?"

Preselection Based On Past Experience (Learned Knowledge Base)

How can I get some quick results?

Adaptive sampling-based pruning

Not Your Normal AutoML–Tool: Built For Interactive Results

"What should I try first?"

Preselection Based On Past Experience

- Expected quality/time trade-off (reliable fast pipelines first, high-risk expensive pipelines later)
- Learned from past experience
- Finally, translate pipeline to python code

For example:

- Gradient Boosting Trees are most-likely a good starting point for the given dataset
- Given the data size, don't even try to use slow models, e.g., SVM and neural nets

Not Your Normal AutoML–Tool: Built For Interactive Results

Warm-starting: build the knowledge

- Run Alpine Meadow on lots of datasets and collect all the pipeline traces
- For a new dataset, find some "similar" datasets we have seen before (**meta-learning**) and transfer knowledge from them
- Similarity is based on some trained model to predict similarity based on meta-features of a dataset

Not Your Normal AutoML–Tool: Built For Interactive Results

Pipeline Selection Search space -> Logical -> Physical

- Combination of multi-armed bandit and Bayesian Optimization, while previous • methods only use one of them

Not Your Normal AutoML–Tool: Built For Interactive Results

Logical Pipeline Selection

- Balance between exploitation and exploration
- Exploitation: exploiting good boxes
- Exploration: avoid being trapped in a local optimum

Not Your Normal AutoML–Tool: Built For Interactive Results

Cost-aware Scoring Model

- Multi-armed bandit problem
- Use past history to select promising logical pipelines (warm-starting from the knowledge bases)
- Consider cost and performance at the same time
- µ: mean of performance (e.g., accuracy)
- c: mean of cost (e.g., time)
- δ : standard deviation of performance
- **O**: constant to balance risk
- Selecting pipeline with probability proportional to S

$$s = \mu + \frac{\Theta}{c} \delta$$

Not Your Normal AutoML–Tool: Built For Interactive Results

Physical Pipeline Selection

- Hyper-parameter tuning: Bayesian Optimization
- Efficient method for black-box function optimization
- Model the function behavior and select the next promising one

Not Your Normal AutoML–Tool: Built For Interactive Results

Physical Pipeline Selection

- Hyper-parameter tuning: Bayesian Optimization
- Efficient method for black-box function optimization
- Model the function behavior and select the next promising one

Overview of Alpine Meadow

"What modeling options do I have?"

Rule-based Search Space Expansion

"What should I try first?"

Preselection Based On Past Experience (Learned Knowledge Base)

How can I get some quick results?

Adaptive sampling-based pruning

Not Your Normal AutoML–Tool: Built For Interactive Results

Try pipeline first on a small sample

- Observe training and test error
- If pipeline performs well, increase sample size

Not Your Normal AutoML–Tool: Built For Interactive Results

Adaptive Pipeline Selection Train error as the lower bound the test error

- Prune if the train error is beyond the current best validation error ٠

Not Your Normal AutoML–Tool: Built For Interactive Results

Experiment Setup

- 300 datasets from DARPA (including manual-made baselines from MIT-LL)
 - Classification and regression datasets collected from Kaggle, OpenML, UCI ML Repository
 - 150 for training (learning the knowledge-base) and another 150 for evaluation
- A 40-core machine with various time limits (10s, 60s, .., 10mins, 30mins, 1hr)
- Evaluation Metric: normalized score = $\frac{Score Baseline Score}{Baseline Score}$
 - E.g., the baseline score can be accuracy (for classification) or negative mean squared error (for regression)
- Comparison against state-of-the-art AutoML methods and hand-made baselines

Alpine Meadow: Not Only Tabular

	Azure	auto-sklearn	TPOT	Alpine Meadow
Tabular Classification	99%	99%	87%	100%
Tabular Regression	100%	98%	100%	100%
Graph Matching	Not Supported	Not Supported	Not Supported	100%
Community Detection	Not Supported	Not Supported	Not Supported	100%
Image Classification	Not Supported	Not Supported	Not Supported	100%
Audio Classification	Not Supported	Not Supported	Not Supported	100%
Collaborative Filtering	Not Supported	Not Supported	Not Supported	100%

Alpine Meadow: Better Results Faster

- 150 dateset used for learning the knowledge-base and another 150 for evaluation
- Results averaged over 150 datasets

Alpine Meadow: Better Results Faster

How Alpine Meadow is Used

Zeyuan Shang zeyuans@mit.edu

- Democratizing Data Science requires rethinking of the entire analytics stack
- Alpine Meadow: Interactive Virtual Data Scientist
 - Rule-based Search Space
 - Logical and Physical Pipeline Selection
 - Adaptive Pipeline Evaluation
 - Evaluation shows good performance with short latency compared against start-of-the-art

Special Thanks to:

