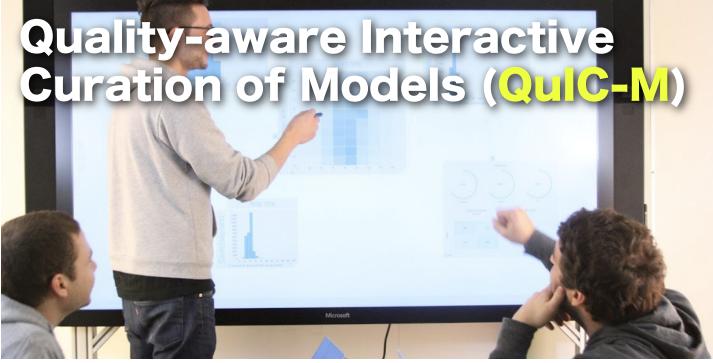


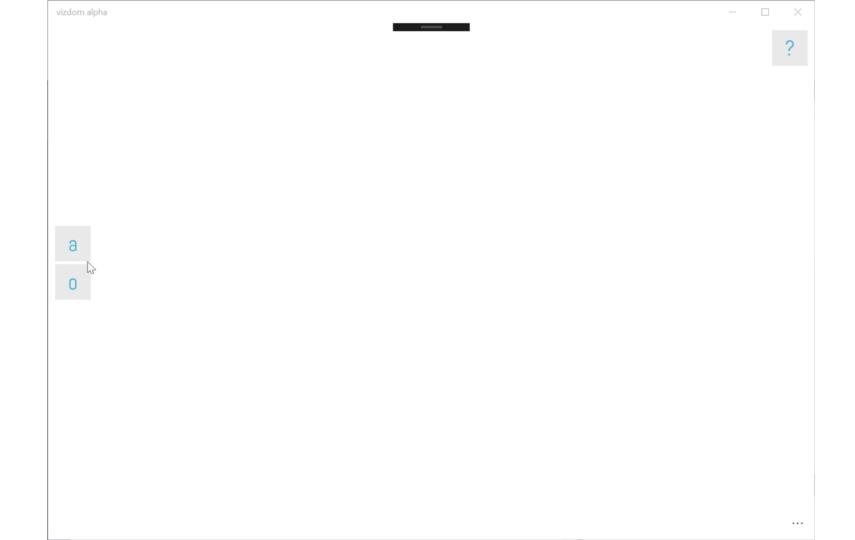
Towards Interactive Curation & Automatic Tuning of ML Pipelines

Carsten Binnig, Benedetto Buratti, Yeounoh Chung, Cyrus Cousins, Tim Kraska, **Zeyuan Shang**, Eli Upfal, Robert Zeleznik, Emanuel Zgraggen

zeyuans@mit.edu


Motivation

Democratizing Data Science comes with challenges



Interactive Data Science Tool to explore data and build models on the fly during a meeting and beyond

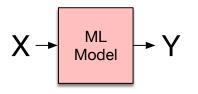
Key Requirements:

- Enable non-experts
- Interactive (first response in seconds, progressive refinement)
- Prevent users from making false discoveries (not part of this talk, see our paper in SIGMOD 2017)

Related Works

Other AutoML Systems

- Auto-sklearn/ Auto-WEKA
- Spark TuPAQ
- Google Vizier

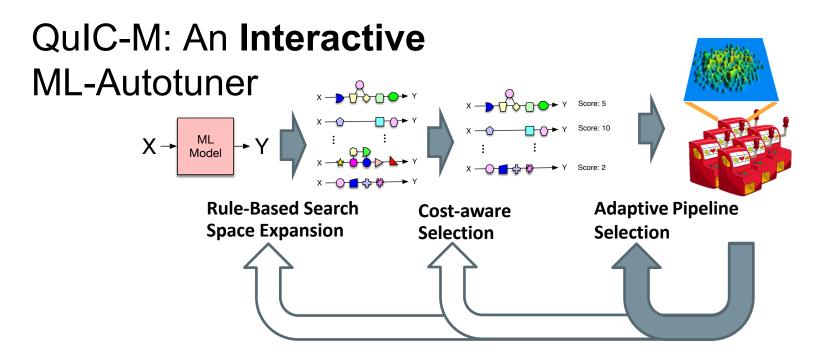

Require

- Well-trained data scientists
- Batch Execution (not interactive)

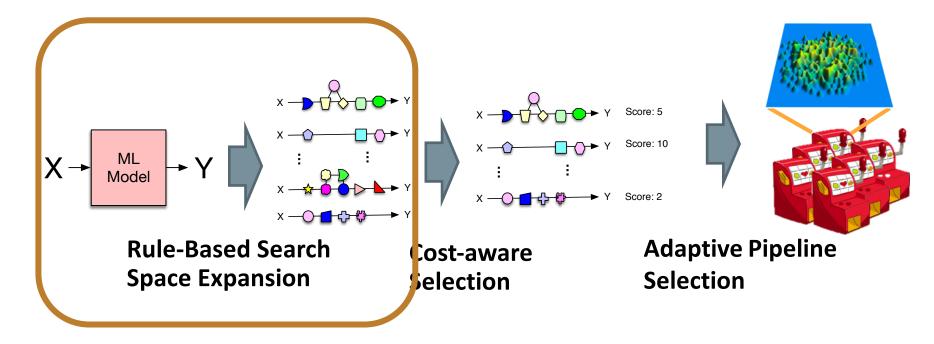
QuIC-M

- Interactive model exploration for non-experts
- Provides quality-aware curation

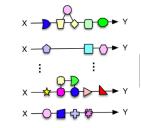
Design Goals



Automation

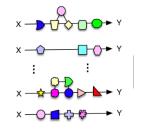

Progressiveness

User-steered

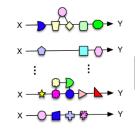


Example: given some stats of a base player, predict whether he will be selected into the hall of fame

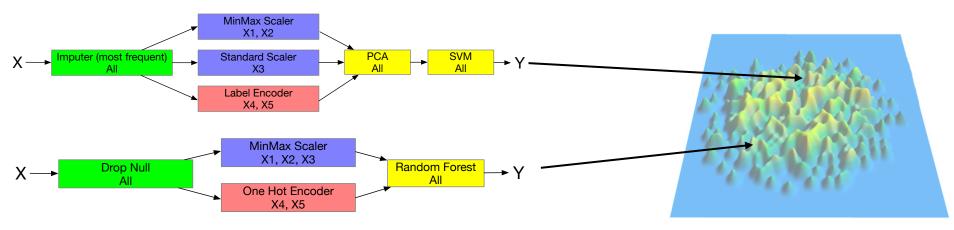
Overview of Methods



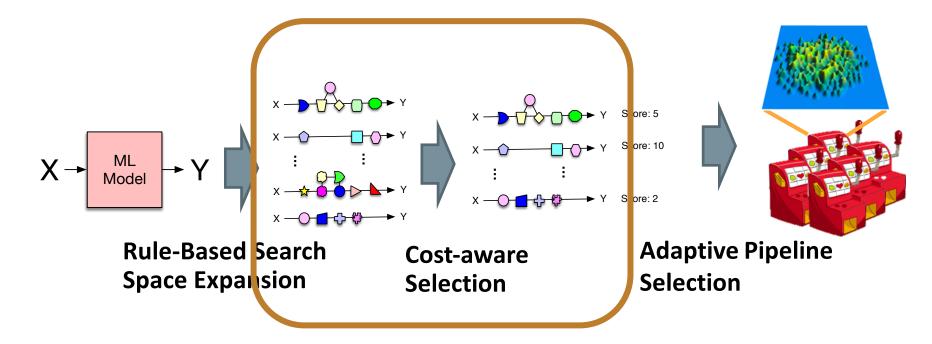
Rule-base Search Space Generation


- Added by experts based on best practices or learned from history
- Primitive Rule: the primitives of pipeline
 - E.g., if numeric feature use MinMaxScaler, StandardScaler
 - E.g., if classification use RandomForest, SVM
- Parameter Rule: the distribution (range) of hyperparameters of pipeline
 - E.g., if SVM, learning rate is log-uniformly distributed between
 0.001 and 1
- Enforcement Rule: validating pipeline
 - E.g., all categorical features should be encoded

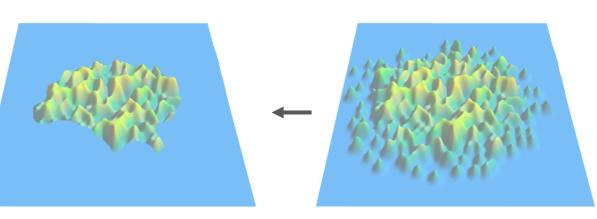
Rule-base Search Space Generation

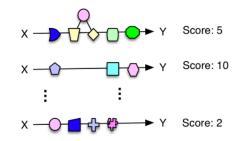


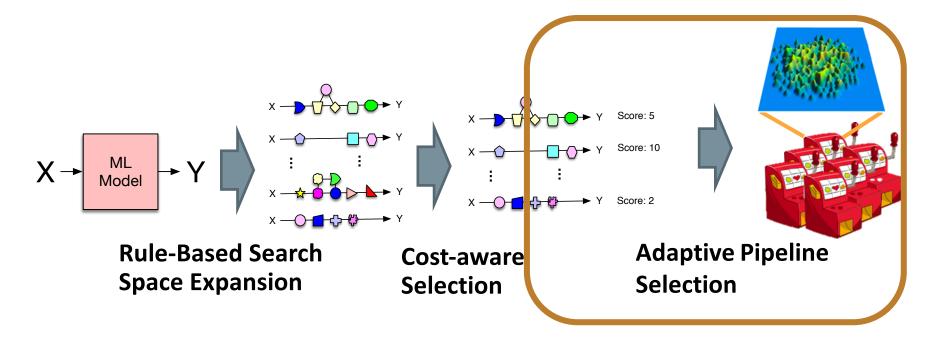
- Execution
 - Find all applicable rules (user-steered)
 - Primitive
 - Parameter
 - Enforcement
- Advantage
 - Easy to incorporate best practices from machine learning experts
 - \circ $\,$ Flexible to add and update $\,$


Rule-base Search Space Generation

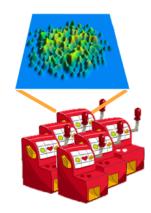
- Example
 - Input (X1, X2, X3) -> Numerical Features
 - Input (X4, X5) -> Categorical Features



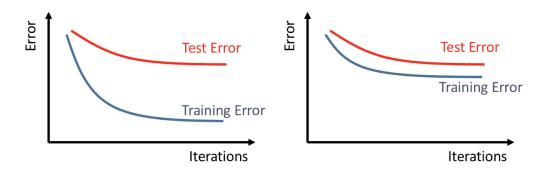

Overview of Methods


Cost-aware Search Space Selection

- Pruning the search space
- Input: pipeline, characteristics of data
- Output: cost(running time) and quality estimate
- User-steered
- Based on past history



Overview of Methods


Adaptive Pipeline Selection

- Algorithm
 - \circ $\,$ Bayesian Optimization for hyper-parameter tuning $\,$
 - \circ $\,$ Bandit-based method on increasingly larger samples $\,$
 - Interactivity

Adaptive Pipeline Selection

• Training vs Test Error as A Signal

Model has **too much capacity** for the amount of data (high variance)

→ Postpone execution to runs with larger sample sizes

Model does not have enough **capacity** (high bias)

 \rightarrow Prune pipeline (i.e., bandit)

DARPA D3M Competition

- DARPA Data-Driven Discovery of Models (D3M)
- Task: given a data description, predict X (e.g., hand-geometry, count crops in images, predict outcome of games,...)
- For every problem DARPA provided a hand-tuned solution (Baseline)

	Solved Problems	Better Than Baseline	Normalized Score
Baseline	100%	0%	0.00

DARPA D3M Competition

- Other teams include universities (e.g., UC Berkeley, Stanford, CMU, NYU, Harvard, Johns Hopkins University, University of Chicago, Cornell University, RPI, Tufts University) and companies (e.g., Uncharted Software, Feature Labs)
- Most teams involve more than one university/company

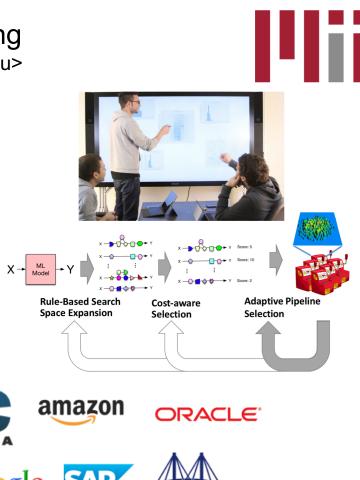
	Solved Problems	Better Than Baseline	Normalized Score
Team MIT/Brown	100%	80%	0.42
Team 1	40%	27%	0.09
Team 2	40%	13%	0.02
Baseline	100%	0%	0.00
Team 3	20%	7%	-0.07
Team 4	87%	47%	-0.16
Team 5	27%	7%	-0.22
Team 6	60%	20%	-0.59
Team 7	87%	53%	-0.75
Team 8	60%	20%	-1.14
Team 9	60%	20%	-4.57

Future Work

- Extension of Rules
- Transfer-learning Opportunities
 - Cost Models
 - Hyper-parameter Tuning
- Execution of Pipelines
 - Caching / Scheduling
- More Benchmarks
- Managing risk (e.g., preventing over-use of hold-out)

Data System for AI Lab DSAIL@CSAIL

Research Area Data Systems for Al for Data Systems


ML Faculty

Zeyuan Shang <zeyuans@mit.edu>

- An interactive curator
- Fully integrated into our data exploration stack Vizdom/IDEA
- Very promising results as part of the DARPA D3M competition

Special thanks to:

