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Abstract

Statistical knowledge and domain expertise are key to extract actionable insights
out of data, yet such skills rarely coexist together. In Machine Learning, high-quality
results are only attainable via mindful data preprocessing, hyperparameter tuning and
model selection. Domain experts are often overwhelmed by such complexity, de-facto
inhibiting a wider adoption of ML techniques in other fields. Existing libraries that
claim to solve this problem, still require well-trained practitioners. Those frameworks
involve heavy data preparation steps and are often too slow for interactive feedback
from the user, severely limiting the scope of such systems.

In this work we present Alpine Meadow , a first Interactive Automated Machine
Learning tool. What makes the system unique is not only the focus on interactivity,
but also the combined systemic and algorithmic design approach; on one hand we
leverage ideas from query optimization, on the other we devise novel selection and
pruning strategies combining cost-based Multi-Armed Bandits and Bayesian Opti-
mization.

We evaluate the system on over 300 datasets and compare against other AutoML
tools, including the current NIPS winner, as well as expert solutions. Not only is
Alpine Meadow able to significantly outperform the other AutoML systems while — in
contrast to the other systems — providing interactive latencies, but also outperforms
in 80% of the cases expert solutions over data sets we have never seen before.

Thesis Supervisor: Tim Kraska
Title: Associate Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Truly democratizing Data Science requires a fundamental shift in the tools we use

to analyze data and build models [1]. On one hand it requires to move away from

Python-like scripting languages, SQL and batch processing to visual and interactive

environments [2, 3, 4, 5, 6, 7]. On the other hand, it requires to significantly reduce the

required expertise to build a machine learning pipeline. Ideally, a user should be able

to specify a high-level task (e.g., predict label X based on my data), and the system

automatically composes a machine learning pipeline to achieve that task, including

all necessary data cleaning, feature engineering, and hyper-parameter tuning steps.

The latter challenge is largely referred to as AutoML or Learning to Learn and

comes in various flavors. For example, there already exists a huge amount of work on a

subset of the problem: automatic hyper-parameter tuning and model family selection.

Most noticeable, TuPAQ [8, 9], Hyperband [10] and the various Bayesian Optimization

approaches [11, 12, 13] all have the goal to automatically determine the best model

family (e.g., SVM vs Linear regression) or parameters for a given algorithm (e.g.,

step-size, kernel, etc.). However, hyper-parameter and model selection is only one

aspect of automatically finding the best ML pipeline for a given task. Rather an end-

to-end solution also has to consider data cleaning operation, feature engineering, and

potentially even data augmentation and transfer learning. For example, in some cases

min-max scaling and feature crosses might help, whereas in others standard scaling

and feature selection to avoid over-fitting is the better choice. In some cases filtering

out outliers and imputing missing values can have significant benefits, whereas in
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others it harms the accuracy.

The closest existing solutions, which allow such end-to-end training are probably

the recent Learning to Learn approaches to find neural net (NN) architectures [14, 15].

The view of some “purist” is that the input of a NN should be the raw data and that

the model – if correctly tuned, for example, by an automatic NN architecture search

– should do all the rest. However, deep learning based approaches only work with

huge amount of training data and output a black box solution (i.e., a neural net),

which is extremely hard to interpret. While this approach might be amenable for

some scenarios, many real-world problems are rather small in terms of data size. For

example, in the current DARPA D3M AutoML competition, only 5% out of the 300

datasets are actually larger than 10MB. We made similar observations when working

with our partners in industry and hospitals.

More importantly though, we are not aware of a single AutoML solution, which

can provide interactive response times to enable users to steer the computation and

contribute to the optimization with their domain knowledge. For example, Google’s

Architecture search can run for weeks [15], whereas even SciKit-Learn’s Hyperpa-

rameter Tuner often take hours before producing a first high-quality result. At the

same time, interactive response times are key: users should see and understand how

the system tries to find the best possible AutoML pipeline and potentially contribute

their knowledge. For example, a doctor might decide to remove questionable features

from the training set after seeing that the model starts to rely too much on it. Fur-

thermore, as shown in interactive data exploration [16], interactive response times can

improve the rate at which insights are uncovered: a team might try to build a model

quickly during a meeting rather than having a week-long back and fourth between

meetings, coding and running experiments, etc.

In this work, we present Alpine Meadow , a first interactive AutoML tool, which

is intended to be integrated into a visual environment similar to Tableau or Vizdom

[2]. However, for this thesis our focus is entirely on the ML optimizer rather than

the visual integration and user feedback. Furthermore, we have a particular focus on

small data and traditional statistical supervised machine learning pipelines, rather

than architecture search for neural nets, unsupervised learning, or automatic data

acquisition and cleaning. While the here described optimization framework can be
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easily extended with these operations, and in fact, our implementation already does

support many of them (e.g., transfer learning for neural nets, unsupervised learning)

describing and evaluating these operation in detail is beyond the scope of this thesis.

Interestingly, the problem of finding the best possible ML pipeline for a given task

(e.g., classify X) has many commonalities with query optimization as already pointed

out in the MLBase vision paper [17]. It requires to explore a potentially enormous

search space and select the best possible plan (i.e., pipeline). We therefore borrow

many ideas from query optimization including rule-based search-space creation. Yet,

what differentiates our approach the most from other AutoML tools is the joint algo-

rithmic and system-based approach to ML auto-tuning, the focus on interpretable ML

pipelines, and our goal to produce a high quality results in less than a few seconds.

In summary, our end-to-end interactive and automated machine learning system

makes the following contributions:

• We present a novel architecture of an AutoML system with interactive re-

sponses.

• We show how rule-based optimization, can be combined with multi-armed ban-

dits, Bayesian optimization and meta-learning to find more efficiently the best

ML pipeline for a given problem. Here, the novelty lies in the fact how we

combine the various techniques into a single system.

• We devise an adaptive pipeline selection algorithm to prune unpromising pipe-

lines early by comparing train and validation errors on increasingly larger sample

sizes of training instances.

• We show in our evaluation that Alpine Meadow significantly outperforms other

AutoML systems while — in contrast to the other systems — provides inter-

active latencies on over 300 real world datasets. Furthermore, Alpine Meadow

outperforms expert solutions in 80% of the cases for datasets we have never seen

before. Finally, as of April 2019 Alpine Meadow was ranked first in DARPA

performed D3M Automatic Machine Learning competition.

The remainder of this thesis proceeds as follows. In Chapter 2 we provide a system

overview, whereas Chapter 3 to 7 discuss the different auto-tuning steps. We evaluate
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our system and compare with baselines and other systems in Chapter 8, summarize

related works in Chapter 9, and finally conclude in Chapter 10.
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Chapter 2

Overview

In this chapter we give an overview of Alpine Meadow and introduce the main termi-

nology.

2.1 System Architecture

Alpine Meadow is part of Northstar [1], a system for Interactive Data Science where

domain experts interact with data through an interactive visual environment called

Vizdom[2]. In this environment, a prediction problem can be specified through drag

and drop gestures and can be as simple as binary classification (i.e. spam detection)

or as complex as graph community detection.

Based on such a problem specification, Alpine Meadow will automatically begin

to search and progressively return machine learning pipelines to the end-user. The

system gradually optimizes over the search space, and periodically returns best-so-far

pipelines to the end-user. Unlike other AutoML systems, we envision our system to

be used in an interactive setting, which allows users to constrain and refine a problem,

early stop a search and embed their domain knowledge.

2.2 The Optimization Process

The core design idea is to solve ML problems by emulating the decision-making pro-

cess of an experienced data scientist. How does an experienced data scientist approach
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Pipeline 1

Pipeline 2

Pipeline 3

Pipeline Arm 1
74.38%

Pipeline Arm 2
47.25%

Pipeline Arm N
96.12%

Pipeline N

Update Search Space Model(6)  Data Augmentation

(1) (2) (3) (4)

(5)

Meta-Learning via
History

Figure 2-1: Optimization loop: (1) search space model, (2) logical-plan selection, (3)
physical-plan selection, (4) pipelines evaluation and pruning, (5) search space model
update, (6) data augmentation

a problem: First, she would inspect the data and, based on her experience, make high-

level decisions about feature scaling, embeddings, data cleaning, etc. The key is to

start out simple. Furthermore, the data scientist would probably use a reliable and

often successful model family, such as random forests, and check for the most common

mistakes (e.g., imbalance of labels or duplicate label columns). Finally, the data scien-

tist would setup a simple optimization strategy for the primitives’ hyper-parameters

and if the data is large, probably first try to build a model over a sample of the

data. Then, after initial results, the data scientist will start to modify the pipeline by

adding more complex processing steps, changing the model family, adding/removing

features, increasing the sample size and so on. It is an iterative and incremental

process. It is further a process with memory as the data scientist remembers, what

worked well over what data in the past.

This process is exactly what we aimed to mirror and automate in our system. We

therefore broke our architecture up into steps that data scientists perform, which has

the advantage to make the problem more tractable than treating it as optimization

problem on a gigantic and heterogeneous space. Figure 2-1 shows the individual steps

in Alpine Meadow :

(1) Search Space: The system first creates a search space of logical pipelines .

We define a logical pipeline plan as:

Definition 1. Logical Pipeline Plan: a Directed Acyclic Graph (DAG) of primi-
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tives, with their hyper-parameters’ domain specification (not fixed).

We create the logical plans through applying rules, similar to how SQL transfor-

mation rules can create a space of equivalent logical query plans. For example, a

rule might say that all categorical features should be one-hot encoded, or that nu-

merical features can be scaled. Also similar to logical query plans, logical pipelines

do not yet contain any details about how the pipeline should be executed (e.g., no

hyper-parameters are set).

This step is best compared to asking the data scientist: ”What can I do to predict

X based on my data” and she lists a whole bunch of options, e.g., different ways

of encoding categorical features, scaling numerical features and feature selection, and

different models for prediction.

Extract Targets

Output

Extract CategoricalExtract Numerical

ImputerOne-Hot Encoder

ImputerImputer

Extract Attributes

Denormalize

Input

ImputerStandard Scaler

ImputerSVD

ImputerSGD Classifier

components: UniformIntegerDistribution
(lower=10, upper=256, default=128)

strategy: UniformDistribution
(mean, most-frequent, median)

loss: UniformCategoricalDistribution(...)
average: True/False
...

components: 16

alpha: 1e-4
average: False
epsilon: 1e-4

strategy: mean

loss: log
penalty: 1.2
power_t: 0.25

Figure 2-2: An example pipeline. The boxes in red show fixed hyper-parameters and
they compose a physical pipeline plan with this DAG. While the boxes in green give
distribution of hyper-parameters and they compose a logical pipeline with this DAG.

(2) Logical Pipeline Selection: Similar to query optimization the space of all

possible logical pipelines can be huge. We therefore select the most promising logical
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pipelines based on a cost/quality model learned from past experiments to favor fast

pipelines to provide better interactivity.

This step is best compared to asking the data scientist “What should I try first”.

A data scientist will provide you with a few good general options after taking a quick

look at your data. For example, she might say “Try to normalize all features and use

a boosted decision tree as a start” or she might say, “Given the data size, don’t even

try neural nets”.

(3) Physical Pipeline Selection: After selecting the logical pipelines , they are

instantiated into k physical pipeline plans, which are defined as:

Definition 2. Physical Pipeline Plan: an end-to-end solution to a user-defined

problem, represented as Directed Acyclic Graph (DAG) of primitives with fixed hyper-

parameters.

An example of physical pipeline plan is shown in Figure 2-2. Physical pipelines

are generated from a logical pipeline via Bayesian optimization. Each logical pipeline

hyper-parameters space has an associated performance-model used to find promising

configuration. If a logical pipeline has never been used, there is not any model asso-

ciated with it, hence we start out using default or random configurations. As soon as

the first results are collected, our system starts to select the next hyper-parameters

based on Bayesian-Optimization. The logical and physical plans are a vague anal-

ogy to the query optimization, however, physical pipeline plans don’t include any

implementation details as the physical plans in query optimization do.

This step is best compared to turning the general pipelines into actual Python code.

(4) Incremental Execution: For large datasets, it is often beneficial to run a

physical pipeline on a smaller sample first, and then if the results look promising try

it on a larger portion of the dataset. We therefore, treat every physical plan as a

bandit arm, from which every pull increases the sample size. The bandit mechanism

together with the sampling guarantees that we focus our attention on promising

pipelines early on and get good results quickly, which we can stream back to the user

with short response time.

This is similar to a data scientist first building a model over a sample of the data

before using all available data especially when the data is big.
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(5) Iterative Refinement: By evaluating different physical pipelines , we gath-

ered some experience over the current dataset that we can use to update our cost-

and quality-model to select logical pipeline and the Bayesian-Optimization model for

selecting physical pipeline.

This step can be best compared to the iterative refinements that a data scientist

performs after that she observes the results from a tested model.

(6) Data Augmentation: A more recent step that we started adding to the

process is automatic data augmentation. That is, as part of step (1) we now also

consider, if we can use already trained models as starting solutions or to create new

features. For example, if the goal is to train a classifier based on only 100 training

images, the most promising solution is to actually transfer an existing model or use

existing models to create more powerful features for the given images. Currently,

we only use this approach for image tasks but with very remarkable results. While

not discussed in detail in this work, we briefly outline that our system can easily be

extended to support this.

As we showed, Alpine Meadow tries on a high-level to emulate the steps a data

scientist takes. Furthermore, as the distinction between a logical pipeline and physical

pipeline already shows, our optimizer has many similarities with traditional query

optimization and a lot of optimization potential exists as we discuss in the remaining

chapters. It should also be noted, that this is not the only way to build an interactive

end-to-end AutoML tool and in Chapter 7 we discuss alternative designs. However,

like the original Selinger paper [18] on query optimization, it is a start, and will

hopefully result in various follow up work.

2.3 Algorithmic Walkthrough

Algorithm 1 and 2 provide a simplified outline of the entire optimization process

following the previous described steps (minus the augmentation). First, we create a

master Pipeline Selection thread running Algorithm 1, and several Pipeline Execution

worker threads. The two are connected through a fixed size execution queue Q. Every

time the queue has free space, the Pipeline Selection thread tries to find a promising

logical pipeline, and based on it creates k physical pipelines to execute, which it then
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Algorithm 1: PipelineSelection

Input: Problem P , Dataset D, Q
1 while Q.has space do
2 lp ← NextLogicalPipeline(P , D)
3 pps ← NextPhysicalPipelines(lp, k)
4 Q.putAll(pps)

Algorithm 2: PipelineExecution

Input: Problem P , Dataset D, Q, scorebest
Output: Pipeline Found

1 while !Q.empty do
2 p ← Q.take()
3 for score ← AdaptivePipelineSelection(p, D) do
4 if score ¿ scorebest then
5 scorebest ← score
6 yield pipelinebest

7 Update models using running history of pipeline;

adds to the execution queue.

Whereas the worker threads take up a physical pipeline from the queue and execute

it using our sample-based execution strategy (line 3 in Algorithm 1). Note, that for

a single physical pipeline we receive more than one scores, as we incrementally train

and test the sampled pipelines. If the score for a pipeline is higher than the so far

best seen score, we report it to the user (line 4-7) and update our history of pipeline

runs to make better decisions in the future (line 7).
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Chapter 3

Rule-based Search Space

Data scientists rely on their expertise and past experience to solve challenging prob-

lems. We imitated this process by adapting the idea of rule-based search space def-

inition commonly used in database optimizers to our AutoML system. Rules in our

system encapsulate best practices similar to those data scientists might use. Given

the definitions in the previous chapter we propose three kinds of rules: primitive,

parameter and enforcement rules.

Primitive Rules add new primitives to the search space dependent on the task (e.g.,

using different algorithms for classification, regression, recommendation, or graph-

related problems) or the dataset schema (e.g., applying one-hot encoding for categor-

ical features). Until now, we have integrated close to hundred primitive rules derived

from winning Kaggle competitions, expert solutions to problems provided by DARPA,

and interviews with data scientists. These rules, for example, include things like en-

coding categorical features, scaling numerical values, imputation of empty values,

selection of features, choosing models for different problem types, extracting features

from raw text and images, building the graphs for graph datasets etc. Primitive rules

are used to build and rewrite logical pipelines . Applying a rule can either start a new

logical pipeline or extend existing ones by adding primitives that operate on all or a

subset of columns. What makes our approach unique is that we create two types of

logical pipelines :

• General logical pipeline : General pipelines always use primitives over all

features if they share the same semantic type, and only use one primitive type
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per category. For example, a general pipeline would encode that we run a

one hot encoder on all categorical columns, a min-max scaler on all numerical

columns, then do an SVD on the concatenation of these two results, and feed

them into a SVM. A general pipeline would thus not use two different encodings

for the same numeric feature, or first apply min max scaling followed by standard

scaling. This approach allows us to severely restrict the number of general

logical pipeline and also make the transfer learning of pipelines between different

datasets possible.

• Data-specific logical pipeline : These are logical pipelines with no restric-

tions on the primitive compositions and can be dataset dependent. For example,

for a problem of predicting whether a player can be selected into the hall of fame,

we can run a standard scaling on the number of seasons of the player, and a

min max scaling on the average scores of the player. Obviously, for any given

problem, there can be a large amount of data-specific logical pipelines .

Parameter Rules generate reasonable distributions for hyper-parameters of primi-

tives. For example, a rule might be that the set of possible values for the kernel of a

SVM are linear, poly, sigmoid or rbf, or that the value for the regularization factor λ

should be sampled from a log uniform distribution.

Enforcement Rules check the feasibility of a logical pipeline. Not every generated

logical pipeline is feasible. For example, most algorithms will fail if not all the cat-

egorical features are encoded into numerical values or raw data (e.g., text) are not

featurized. Alpine Meadow uses enforcement rules to validate logical pipeline and

aborts the generation of unfeasible ones.

For execution of primitive rules, we have the probability of γ to create general

logical pipelines or data-specific logical pipelines . In our implementation, γ is set

to 0.5. We only return a logical pipeline when it passes all the enforcement rules,

and users have the opportunity to affect our selection of logical pipeline here, for

example, we can add a enforcement rule to only allow for logical pipeline with SVMs

or logical pipeline with no more than 10 steps. After that, we execute parameter

rules to assign reasonable distributions of hyper-parameters for primitives of a logical

pipeline. Before applying any rule, we always check the predicate of the rule to make
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sure it works for the given problem and dataset.

By applying rules to build the search space, we make the generation of logical

pipeline plans flexible. It allows to add new rules to extend the system to support

new problems, datasets and incorporate best practises from machine learning experts.

Moreover, rules also create easy-to-explain solutions for better interpretability by

users; especially general logical pipeline are often easy to understand. Furthermore,

it allows to inspect which set of rules led to the creating of a specific logical pipeline.

Finally, rules can be learned and automatically added. In the simplest form, we

add a new expansion rule for every newly-added primitive. For example, if one adds

a new feature scaler for numeric value, we add a rule that the optimizer can use this

new feature scaler for numeric values. However, it is possible to use the rules to

apriori restrict the search space (e.g., only use this feature scaler if the classifier is

an SVM) and these rules could be learned from Kaggle and OpenML. In our current

implementation, we do not make such restrictions and leave it up to the meta-learning

algorithm to make the right choices early on.
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Chapter 4

Pipeline Logical Plan Selection

Ideally, we want to select pipelines from the search space, which worked well in the

past over similar datasets. However, occasionally we want also try out new approaches

(e.g., an estimator that we never tried before). Furthermore, we should probably

favor solutions in the beginning, which are more general, fast and reliable, but later

specialize and use more complex models. Finally, we can not enumerate all potential

pipelines; so any strategy has to use some kind of heuristic to traverse the search

space.

Obviously, there is no single “right” way to balance all these objectives. In the

following, we first describe on a high level how our selection process works, before we

discuss the individual components in more depth.

4.1 Overview

The most important difference between building an AutoML optimizer and query

optimizer is that for ML pipelines we can actually try and evaluate hundreds if not

thousands of pipelines, while in query optimization once a plan is executed there is

nothing left to try out. The goal of our optimizer is to select and try out various

logical plans in a way that maximizes the probability that one of them contains the

best possible physical pipeline: often logical pipelines diversity can help. Furthermore,

it is a iterative process: we can stop the evaluation of a pipeline at any point in time

and start a new one as it deems fit; something which rarely pays off in traditional
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Algorithm 3: NextLogicalPlan (NLP)

Input: Problem P , Dataset D
Output: Next logical pipeline

1 if rand() ¡ β then // Selection (Exploitation)

2 Compute µk, δk and ck for each logical pipeline k using the history
3 LogicalPlan ← select a logical pipeline k with a probability proportional

to µk + θ
ck
· δk

4 else // Random (Exploration)

5 if random() ¡ γ then // General pipeline

6 LogicalPlan ← general logical pipeline

7 else // Data-specific pipeline

8 LogicalPlan ← data-specific logical pipeline

9 return LogicalPlan

query optimization, but which is common practice for ML. Our goal is therefore

to build a function called NLP , short for next logical pipeline, which we invoke

to obtain promising logical pipelines . More importantly, we found that using past

history is the best predictor for future performance and thus balancing exploitation

(leveraging what worked well in the past) and exploration (trying out new things)

are key to finding good solutions. The high-level pseudo-code for selecting the next

logical pipeline is shown in Algorithm 3.

Exploitation To balance the two objectives, exploitation and exploration, we

use a simple random process: with likelihood β, we select a general logical pipeline,

which worked well in the past (lines 1-4 in Algorithm 3). We evaluated β over various

datasets (see Chapter 8.4.1) and found that β = 0.5 provides a good balance. We

steer exploitation based on a score measuring how promising each logical pipeline

is, while the score is calculated based on past experiences. We restrict transferring

past experience to general logical pipelines as we found that it is less reliable for

data-specific pipelines because of the sheer amount of options and the sensitivity

to the dataset. Therefore, Alpine Meadow stores information about every physical

pipeline ever run including its corresponding logical pipeline, final accuracy, execution

time, task information, and dataset characteristics. This allows us, for example, to

calculate the average and variance of the accuracy and execution time of a model for

a given task and set of data characteristics. Based on this historic information and
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given a new task, Alpine Meadow then creates a score of every previously run general

pipeline. This ranking is based on the execution time. That is, in the beginning we

rank logical pipelines higher which return quickly, whereas later execution time might

be less of a concern. Finally, its selects randomly one of the pipelines depending on

the score: the higher the score, the higher the chance that the general pipeline gets

selected. Furthermore, in the moment we receive results on how well a selected logical

pipeline performs, this information is also stored, which in turn might change the

scores for the next selection.

Exploration In contrast to ensure that Alpine Meadow also tries new things,

with the likelihood 1− β we select a logical pipeline which we have never run before.

Here we again randomly select with likelihood γ either a general logical pipeline, or

with likelihood 1−γ a data-specific pipeline (lines 4-9 in Algorithm 3). We evaluated

γ over various datasets (see Chapter 8.4.1) and found that γ = 0.5 provides a good

balance. Note, that by adjusting γ over time, we can favor general pipelines in the

beginning and maybe later in the execution split it evenly between general and data-

dependent pipelines, which are more specialized. For example, with a large γ, we

prefer general logical pipelines , then we are more likely to generate general ones like

the pipeline in Figure 2-2. With a smaller γ, data-specific pipelines are more likely

chosen, while they are usually more complicated, e.g., run min-max scaling on one

column and standard scaling on another column, followed by a PCA. Many ways

exists on how to select the potential logical pipeline for which we have no experience

yet. However, what we found is that randomly selecting a solution often performs

as good as a more advanced techniques. The reason is, that the number of general

pipelines is relatively small, so that we will anyway try them all in a short amount

of time, if γ is not set too low. In contrast, the number of data-specific pipelines is

very sensitive to the data properties (much more than the general pipelines) and the

search space is so big, that we can often not create enough samples that any advanced

optimization technique would actually pay off.

Finally it should be noted, that this selection process does not yet tune any of

the hyper-parameters and that for every logical plan we usually try several hyper-

parameters, as explained in Chapter 5.

29



4.2 Selecting Based on History

In this section we focus our attention on how we select a general pipeline from the past

(lines 1-4 in Algorithm 3). We modeled this selection process as a Multi-Armed

Bandit (MAB) problem. We adapt the definition of MAB presented in [19] to the

concept of logical pipeline selection as follows:

Definition 3. Multi-Armed Bandits (MAB) Problem: given a set of actions

a ∈ A and a time-budget T , in each round t ∈ [T ]:

1. An algorithm picks an arm at ∈ A

2. Algorithm observes a reward from the chosen arm at

Given that the arms reward distributions Da are unknown and independent, find

the algorithm that approximate the best solution with the smallest reward loss (regret)

We base the selection of past pipelines on MAB as many algorithms exists approx-

imating the optimal solution; among the most known are Upper Confidence Bound

(UCB) [20] and ε-greedy [21]. This provides us a powerful and proven solution.

Selecting With Bandits The core idea is as follows: (0 - Init) We have one

arm for every related (based on the task and dataset) general logical pipeline we ran

in the past and we preset a score for each arm based on our past experience. (1

- Selection) We select an arm (i.e., logical plan) to play (i.e., run) randomly but

proportional to the score. When the execution is done, we (2 - Store History) store

the result in our history log and (3 - Adjust Scores) adjust the scores accordingly,

and then the process repeats from (1).

They are four core problems we have to address (1) how we select arms (i.e.,

pipelines) based on similarity of the task and data, (2) how we define the score, (3)

how we transfer the past observed performance to the current dataset and task, and

(4) how we adjust the score based on the feedback we get of actually running pipelines

for the given tasks. We will address those challenges in this order.
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4.3 Remembering the Past

To find related history for a given task and datasets can be regarded as a meta-learning

problem. Meta-learning [22] tries to infer learning algorithms performances from the

performance of learning algorithms across different datasets. We use the same idea

from meta-learning to quantify the similarity between datasets. [23] proposes many

meta-features to capture the high-level characteristics of a dataset. Those include:

number of features, the imbalance ratio of classes, the number of instances, PCA

statistics and information-theoretic features etc.

Further, [23] proposes a distance function based on the performances over a fixed

set of n representative pipelines on two datasets. Formally, assume that there are n

pipelines (θ1, . . . , θn), we use the negative Spearman’s correlation coefficient between

the ranked results on both datasets (denoted as dc):

dc(Di, Dj) = 1− Corr([fDi(θ1), . . . , f
Di(θn)],

[fDj(θ1), . . . , f
Dj(θn)])

where fDi(θ1) denotes the computed score after evaluating pipeline θ1 on Di.

For a new datasetDnew, since we have not yet evaluated these n reference pipelines,

we can not directly compute dc. However, assume there are N pre-provided datasets,

[23] addressed this by computing dc(Di, Dj) for all 1 ≤ i, j ≤ N and using regression

methods to learn a function R : RF ×RF → R, mapping from pairs of meta-features

< mi,mj > to dc(Di, Dj). Then with this learned model, the distance function can

be approximated as

dc(Dnew, Di) ∼ R(mnew,mi)

In our implementations, we built R using a random forest because of its robustness.

With distance function dc, we can get the list of applicable history (i.e., logical

pipelines and their performances) from similar datasets for a given dataset Dnew,

such that the dataset D associated with the instance of history has dc(Dnew, D) =

R(mnew,m) ≤ τ . In our implementation, we use τ = 0.3 and return all pipelines

below the threshold together with their mean performance µ, performance variance

δ, and averaged execution time c. Each of these pipelines become a bandit arm, which
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can then be executed.

4.4 The Scoring Model

We want to balance the expected quality vs time. We therefore defined the score for

each logical pipeline plan as:

sk = µk +
θ

ck
· δk (4.1)

where µk and δk are the mean and standard deviation of the rewards (i.e., quality

of the logical pipeline plan) and ck is the cost, or execution time, for logical pipeline

ak based on the past history. Note, that we divide only the variance by the execution

time and multiply it by θ. Here θ is a factor on how much risk we want to take

to try a pipeline, which might have a high upside (i.e., variance). We normalize

the variance by the execution time as proposed in [24]; so the higher the potential

payback, the longer we are willing to wait for it. However, we do not adjust the

mean reward by the execution time. A pipeline which always performs good should

be selected from the beginning. However, this is only reasonable as (1) we assume a

high parallelism (explained later), (2) assume that some short running pipelines will

always be selected, and (3) our physical execution quickly prunes out long running

under performing physical pipelines .

The last step to achieve a complete solution to the logical plan selection problem

is the initialization of the scores based on the history, which involves two main chal-

lenges: (1) we have to identify the similar tasks and according dataset from the past

(i.e., learning from the past), and (2) normalize the scores to the new problem so that

they can actually be used (i.e., transferring the experience).

4.5 Transferring the Experience

While it seems that we can immediately use the score formula above and fill it using

the values from the history, we actually can not. Even for similar datasets, the same

physical pipeline may have different scales of scores (since we only consider relative
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rankings to quantify the similarity between datasets). To this end, for all pipelines

of a specific dataset, we can standardize their scores to fit into the same scale. For a

pipeline p and its score s, we normalize it as

snew =
s− µd
δd

where µd and δd are the mean and standard deviation of scores of all pipelines on

this dataset. We cluster these past iterations and their normalized scores to their

corresponding logical pipelines , which has the same structure (DAG). Then we com-

pute the mean µ
′

k and standard deviation δ
′

k for each logical pipeline k using these

normalized scores.

4.6 Learning from the Current Experience

Finally, we want to adjust the scores based on the actual feedback by running pipelines

over the actual data. Assuming µk is the just observed new mean quality and µ
′

k is

the old mean quality. We then calculate the new value for µ̂k by first normalizing the

score and by means of exponential smoothing as:

µ̂k =
µk − µ
δ

+ α · µ′

k (4.2)

where α achieves the trade-off between current results and history results. In our

implementation, we set α = 0.2. In the future, we plan to make α degrade over time

to prioritize information from current session. The adjustment for the variance δk

and execution time ck is very similar.

Furthermore, all pipelines (general and data-specific) which get selected for ex-

ecution, will become a new arm as soon as they return a first result. This has the

advantage, that as soon as we try something new, it becomes part of the memory of

our system and the bandit algorithm might select it based on its score in the future.
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Chapter 5

Pipeline Physical Plan Selection

For a specific logical pipeline, there exists possibly an infinite number of physical

pipelines with different hyper-parameter configurations. In order to to find the best

possible hyper-parameters configuration, we uses Bayesian Optimization:

Definition 4. Bayesian Optimization (BO): optimization strategy that finds a

global optimum point x∗ ∈ X of a function f : X → R (which analytical form is

unknown), building a surrogate model Mf of f to guide the optimization.

In our setting, f is the unknown score function that maps the physical pipelines

with their respective performances. Since the evaluation of f is expensive, we use

Bayesian Optimization, specifically Sequential Model-Based Optimization (SMBO),

to build a model of f to keep track of which are the most promising regions in the

search space.

For every selected logical pipeline, the optimizer probesMf using a sampling pol-

icy to find the next most promising hyper-parameter configuration to be evaluated.

In our work we use the widely adopted expected improvement (EI) [25] as sampling

policy, due its ability to balance exploration (search in unexplored regions) and ex-

ploitation (search in promising regions) [26, 25, 27]. We adopt the implementation

of SMBO from [28] which uses a random forest to build the surrogate model. This

random forest is trained using past configurations performances and estimates for

a new hyperparameter configuration θ, its predictive mean µθ and its variance σ2
θ ,

to compute for each physical pipeline its expected improvement with respect to the

current best.
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Based on SMBO we create k physical pipelines for each logical pipeline (we set

k as 10 in our implementation), and pushes them into a shared queue that is con-

sumed by the evaluation module as described next. Here, again we not only pick the

most promising hyper-parameters, but also introduce some random candidates in its

physical pipeline candidate-list to avoid to get stuck in local optimum point. Once

those physical pipelines evaluation is complete, their scores are returned and theMf

updated accordingly.
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Chapter 6

Pipeline Evaluation and Pruning

We implement the execution engine of Alpine Meadow using master-slave paradigm

to allow scalable training and testing of physical pipelines and coordinate the work

using a single producer, multiple consumer paradigm as shown in Algorithm 1 and

2. That is, we have a queue of physical plans to run of size m, which are picked

up by execution workers. Every time k slots become available, the producer runs

Algorithm 1, first select a logical plan (Chapter 4), based on it select k physical

pipelines (Chapter 5) and insert them to the queue. Those physical pipelines are then

picked up by the workers running Algorithm 2 and executed and the process repeats.

Note, that this approach only works well as we assume that the number of workers

w we have is much larger than k, w >> k, and m is set to be larger than w.

However, two main problems remain: (1) how do we return results early based

on samples to ensure interactivity, and (2) can we potentially stop the execution as

soon as we detect that a pipeline is not promising. It turns out, those problems are

actually related as explained next. Finally, our execution strategy has huge potential

for result reuse, which is explained in Chapter 8.4.4.

6.1 Incremental Execution and Pruning

To achieve incremental computation and return results early, as well as reduce the

computational resources spent on bad pipelines we devised Adaptive Pipeline Se-

lection (APS), a bandits-based pruning strategy able to detect bad performing pipe-
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Algorithm 4: Adaptive Pipeline Selection (APS)

Input: Pipeline pipeline, D
Output: Score (negation of error)

1 Split D into Dtrain and Dvalidation.
2 Split Dtrain into equal-sized D1

train, . . . ,DNtrain;
3 foreach i ∈ 1 . . . N do
4 Train pipeline on D1...i

train;
5 errvalidation ← Test pipeline on Dvalidation;
6 if errvalidation < errbest then
7 errbest ← errvalidation;

8 yield -errvalidation;
9 errtrain ← Test pipeline on D1...i

train;
10 if errtrain > errbest then
11 return -inf

12 return -errvalidation

lines, without using the whole training set.

As shown in Algorithm 4, APS gets as input a dataset D, and it splits into a

training dataset Dtrain and a validation dataset Dvalidation. Then it splits the train-

set into N smaller samples of the same size D1
train, . . . ,DNtrain. For each sub-epoch,

APS generates a partial training sample as follows:

Definition 5. Sub-epoch: a partial training phase in which the sampled physical

pipeline trains on a partial training sample. At sub-epoch i-th the partial training

sample is equal to the union of the first D1
train ∪ D2

train ∪ . . . ,Ditrain data splits.

As shown from line 4 to 6, after the partial training phase, APS computes errvalidation

and updates errvalidation if necessary. For fast response, we will also return the score

(negation of the error) to the main loop in Algorithm 2 to enable interactivity, there-

fore the master can make the decision of whether using such a pipeline trained on

samples by comparing its score with the current best. After this it computes the

physical pipeline partial training error and uses it as a lower bound of the final test

error. Thus at the end each sub-epoch i, APS applies the following halting criterion:

Halting Criterion 1. At sub-epoch i, if the physical pipeline partial training error

is above the best validation error (seen so far), terminate it.

The halting criterion is based on the facts that errtrain < errtest and they will

eventually converge if enough data is provided (under the iid assumption). This
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Figure 6-1: the more iid train samples we provide to the physical pipeline, the closer
the train and validation error become.

idea is well displayed in figure 6-1 where the more data we provide to the physical

pipeline the smaller the gap between train and test error becomes, making the bound

on the final test error tighter and tighter. In the appendix we provide additional

experimental evidence regarding the high correlation between train-test error, showing

in the striking majority of the tested pipelines, the train error successfully bounds

the final validation error.

The actual execution of APS is asynchronous. At each sub-epoch the individual

threads compare their physical pipeline partial training and validation results against

the current best performer, and if there is an improvement, they return it to the end

user. APS saves computational resources by spending less on bad performing physical

pipelines and more on promising ones and returning them faster to the end-user. This

has a direct impact on the system’s interactiveness.
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Chapter 7

Discussion

Pipeline Selection: By combining multi-armed bandit and Bayesian Optimization

(BO), our algorithm essentially adopts a two-step strategy: finding the best primitives

(or logical pipeline), and then finding the best hyper-parameters (or physical pipeline).

Another approach would be to take the structure of primitives as hyper-parameters,

build a giant search space of all logical pipelines , and use BO over this space to find the

best pipeline. However, such a search space is highly-heterogeneous and conditional,

making it difficult to train an accurate regression model. For example, some hyper-

parameters are specific to certain models but for BO to work all possible parameters

need to be represented in a single feature vector. Updating the search space is also

challenging. For example, if a new primitive (e.g., a new classification algorithm) is

added, we cannot reuse previous history anymore as the feature space has changed.

Moreover, it is very hard to find good optima with existing optimization methods

when the search space is giant and highly complex.

Finally, it is also difficult to consider performance and cost at the same time in

the traditional BO methods, and BO is also hardly explainable since it is essentially

an optimization method for black-box functions. In contrast, multi-armed bandits

provide a better intuitions what is happening. Therefore, by combing these two

methods, we can inject context information (e.g., cost of executing physical pipeline)

when solving the multi-armed bandit problem. By splitting the whole search space

into several smaller ones (i.e., logical pipeline), we can avoid more quickly useless sub

search spaces and build a more accurate BO model with less data since the complexity
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of search space is greatly decreased.

Interactivity: As Alpine Meadow is used in the interactive setting. In order to

support interactivity, we employ time-based cost models that favor fast pipelines

early on, train pipelines over small samples first, prune unpromising pipelines early,

and even make extensive use of caching for our own developed operators as discussed

in Chapter 8.4.4.

Novelty over auto-sklearn: Our system is similar to auto-sklearn [13] as both

use meta-learning and Bayesian Optimization. However, there are several key points

where Alpine Meadow differs significantly from auto-sklearn: 1) Alpine Meadow

uses a rule-based search space, which is more extensible and supports more problem

types than auto-sklearn (see Figure 8-1). 2) Alpine Meadow combines multi-armed

bandits with Bayesian Optimization (BO) to better explore the search space and im-

prove interactivity. That is, auto-sklearn only returns one pipeline after a fixed

time-budget while Alpine Meadow reports a stream of results with updates whenever

a better pipeline is found. 3) The ”warm-starting” techniques (i.e., the use of meta-

learning) are different: auto-sklearn uses a few good pipelines as starting points,

whereas Alpine Meadow uses the history of the quality and cost of all so far run pipe-

lines. This allows us to tradeoff between performance and speed, leading to better

performance in early stages. 4) Alpine Meadow adopts the Adaptive Pipeline Selec-

tion to prune unpromising pipelines at an early stage while auto-sklearn evaluates

the pipeline on the full data, which makes it unable to produce results quickly, as

justified in Figure 8-3(a).
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Chapter 8

Experiments

We aim to answer three main questions: (1) How does our system compare to other

state-of-art ML auto-tune systems? (2) Are we able to return answers more quickly

than other systems, ideally with interactive latencies? (3) How much do our individual

design decisions influence the system?

8.1 Experimental Setup

Datasets For the majority of our evaluation, we use the datasets provided by the

DARPA D3M competition. DARPA’s program on Data Driven Discovery of Models

(D3M) has the goal to build tools to automatically build models for a given task

with and without human feedback. As part of this program DARPA performs com-

petitions every 6 month between all participating teams including teams from UC

Berkeley, Stanford, MIT, NYU, etc. Every competition compares all the systems on

datasets the teams have never seen before. However, in order to prepare the teams

for the competition, DARPA released over 300 datasets; 220 classification datasets,

the smallest being 151 records large, the largest being 1025000 records large, and

80 regression datasets, the smallest being 159 and the largest being 89640 records

large. Here records refer to either tabular structured data, text-data, images, and

even audio-files.

As mentioned before, our system heavily relies on the past experience to find good

solutions. We therefore randomly split the datasets evenly into a training and test
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Tabular Classification
Tabular Regression

Graph Matching
Community Detection

Image Classification
Audio Classification

Collaborative Filtering

Azure

99%
100%

Not Supported
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Not Supported

auto-sklearn

99%
98%

Not Supported
Not Supported

Not Supported
Not Supported

Not Supported

TPOT

87%
100%

Not Supported
Not Supported

Not Supported
Not Supported

Not Supported

Alpine Meadow

100%
100%

100%
100%

100%
100%

100%

Figure 8-1: Comparison of Alpine Meadow with different systems regarding supported
problem/dataset types. The percentages are calculated by the ratio of datasets sup-
ported by the system.

set; we use the training datasets to build up history, and only report the performance

on the other half of the data.

Building Up Experience For the training datasets and tasks, we then extensively

try out various pipelines to build up past experience. That is for every classification

dataset we try 66 general logical pipelines, and for every regression dataset 44 regres-

sion pipelines. In total we spend 30 minutes per training dataset to build up sufficient

experience to be used for future tasks. In total, we executed around half a million

physical pipelines , which would take roughly 3 days on a single machine. However,

the training is embarrassingly parallel and with 20 machines only takes 4 hours.

Baselines We compare against four baselines: (1) hand-made solutions from DARPA:

while some DARPA solutions are state-of-the-art highly tuned solutions, others only

represent reasonable solutions; a solution a relatively experienced data scientist can

manually come up with in a few days; (2) auto-sklearn (version 0.4): automatically

searched solutions from auto-sklearn [13], which is the state-of-art open-source Au-

toML system; (3) TPOT (version 0.9) : an interactive AutoML system using genetic

programming [29]; (4) Azure (as of March 2019): Microsoft Azure AutoML (based

on [30]). The experiments are restricted to AutoML, while feature engineering and

other transformation primitives are not evaluated.

Metrics for Comparison We use F1 scores for classification problems and mean

squared error for regression tasks. We further adopted the normalized score normAB

44



of system A over system B from DARPA D3M AutoML Competition:

normAB =
sA − sB
|sB|

Here the score SA (SB) is either the F1 score or the negation of the mean squared

error, such that the higher scores are always better. Intuitively, normAB measures

how much better system A performs over system B. Note, that this normalized

score is biased; the best possible score is 1 but the worst can be go to −∞. We

decided to use it as it DARPA’s main measure, but refrain from interpreting absolute

values. In addition to normalized scores, we also use relative ranks to compare

different systems. For example, if system A gets a F1 score of 0.8 and system B a

score of 0.9, the rank is 1 and 2 for system B and A respectively. Here absolute values

are more meaningful, thus we will use relative ranks, as well as discretized scores (as

in Figure 8-2) to compare between different implementations. Finally, we report an

alternative unbiased metrics in Chapter 8.4.3.

Hardware Environment All experiments were conducted on a single machine with

a 40-core Intel(R) Xeon(R) CPU E5-2660 v2 @ 2.20GHz and 256 GB RAM, running

with Ubuntu 16.04 and Python 3.6.3. We set the number of workers to 80 on this

machine to utilize all hyper-threads.

8.2 Comparison with other Systems

Functionality: We first compared Alpine Meadow with auto-sklearn, TPOT, and

Azure in terms of how many datasets they can handle (shown in Figure 8-1). We

found that none of the other systems can handle image, audio, or collaborative fil-

tering problems, whereas Alpine Meadow supports a wide range of problems. More

surprisingly though, none of the other systems is even able to handle all structured

classification and regression tasks.

Performance: Next, to evaluate the performance of the different systems over

the 150 test datasets, we allocated each system a time bound of 1h, and for the

comparison of Alpine Meadow and Azure a time bound of 10 minutes. One thing

to note is that Azure didn’t support F1 scores, so we use accuracy as the primary

metric for classification problems for the comparison between Alpine Meadow and
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Azure. For all systems, we compute the normalized scores between Alpine Meadow

and the respective system.

Higher scores mean Alpine Meadow outperforms the other system, whereas a

normalized score of 0 means the systems perform equally well. We further discretize

the normalized scores into “better’: Alpine Meadow outperforms the other system,

“same”: scores are equal, and “worse”: Alpine Meadow performs worse than the

other system. Here we also only consider the datasets the system was actually able

to run and exclude all datasets for which a system failed or didn’t find a solution in

the given time bound. The results of this experiment are summarized in Figure 8-2.

Overall, Alpine Meadow outperforms or equals Azure in 70% of the datasets, 79% for

auto-sklearn and 74% for TPOT.

better (89)

same (18)

worse (42)

Alpine Meadow vs. Azure

better (109)

same (10)

worse (29)

Alpine Meadow vs auto-sklearn

-103 -102 -101 -1000100 101 102 103

normalized score

better (94)

same (9)

worse (33)

Alpine Meadow vs. TPOT

Figure 8-2: Comparisons of Alpine Meadow with different systems across multiple test
datasets. Normalized scores are computed as Alpine Meadow ’s score over the other
system’s score. Scores are discretized into “better’: Alpine Meadow outperforms other
system, “same”: scores are equal, and “worse”: Alpine Meadow performs worse than
other system.

Comparison over Time Being able to provide solutions within interactive la-

tencies is one of the main design goals of Alpine Meadow . We therefore measured the
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(c) Normalized Score

Figure 8-3: (a) Time to produce first result per dataset (more early results implies
better interactivity) (b) Relative rank of the solutions averaged over all datasets (with
95% confidence bands) over time (lower is better); (c) Normalized scores over the by
DARPA provided solutions averaged over all datasets over time (higher is better).

quality of the top models auto-sklearn and TPOT return over time. We excluded

Azure from this experiment since they didn’t support the F1 score and only recently

in April 2019 were able to support all datasets. We ran all systems over our 150 test

datasets for 1h again excluding failing datasets. Because auto-sklearn only returns

the result after a pre-defined time span we run it with various increasing time limits.

Figure 8-3(a) shows when the first result was returned by the individual systems.

We note that Alpine Meadow is able to return solutions for over a third of the datasets

within 1 second and for all datasets after 26 seconds with an average time per dataset

of 2.76 seconds. This can be largely contributed to the adaptive execution strategy.

The curve of auto-sklearn went down because results were collected from runs of

different time limits, so it found a pipeline for some datasets in a run of short time

while failed to do so in a run of long time.

Second, in Figure 8-3(b) we show how the relative average rank (over all test

datasets) of the three systems evolves over time. Lower rank is better. Alpine Meadow

consistently holds the best rank throughout the entire time span.

Finally, Figure 8-3(c) depicts the average normalized score (over all test datasets)

where we normalize the system’s score over the scores of hand-made solutions. Higher

normalized score is better. We note that on average all three systems can beat hand-

made solutions but Alpine Meadow is consistently leading especially within short time

frames.

Incremental Comparison with auto-sklearn Figure 8-4 shows the incre-

mental comparison (with more techniques employed) between Alpine Meadow and

auto-sklearn. As we can see, if we only employ Bayesian Optimization in Alpine

Meadow , the performance is relatively close to auto-sklearn, however, each in-
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Figure 8-4: Incremental Comparison with auto-sklearn. We compare all these
systems together and compute the averaged relative ranks (lower is better).

dividual technique (which is either not in auto-sklearn or employed in different

ways)improves the performance of Alpine Meadow , including meta-learning, cost-

based pipeline selection and adaptive pipeline selection.

Alpine Meadow
System 2
System 3

DARPA Baseline
System 4
System 5
System 6
System 7
System 8
System 9

System 10

Solved Problems

100%
40%

100%
40%

87%
20%

60%
27%

60%
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60%
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80%
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47%
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-0.07
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-0.22

-1.14
-0.75

-4.57

Figure 8-5: DARPA D3M AutoML competition (latest result in March 2018).

DARPA D3M competition As mentioned earlier, as part of DARPA D3M’s

program, DARPA evaluates the auto-ml solutions of all teams roughly every 6 month

over datasets we have never seen before and also against by DARPA created expert

solutions. Figure 8-5 shows the released results from the last DARPA evaluation

which was done March 2018 (DARPA did another evaluation over the summer, but

still hasn’t released the results yet). In the table we anonymized the other team
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names, which are from places like Stanford, UC Berkeley, NYU, etc, and report the

number of problems the system can solve, if the system is better than the by DARPA

created expert solution, and the normalized score to the DARPA expert solution. As

it can be seen, currently Alpine Meadow leads the competition.

8.3 Evaluation of Design choices
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Figure 8-6: Evaluation of Design Choices. We reported the ranks of different choices
along with time (lower better).

To evaluate our design choices, we ran our system for one hour while enabling or

disabling individual components or optimizations. By comparing the results between

with and without individual design choices, we can have a better understanding of

their benefits. The results are shown in Figure 8-6.

Logical Pipeline Plan Selection We ran our system with four different config-

urations to justify the effectiveness of our cost and quality based logical pipeline

selection techniques: (1) Random, which always picks up a logical pipeline randomly;

(2) Quality, which only considers quality without using history (cold-start) when

selecting logical pipelines , and also has some probability to randomly select a logical

pipeline; (3) Quality+History extends Quality by using history of similar datasets to

improve the selection; (4) Quality+History+Cost further improves Quality+History

by considering cost to prioritize fast pipeline.

As we can see in Figure 8-6(a), at the early stage, Quality, Quality+History and

Quality+History+Cost both outperforms Random, it is because them all choose pipe-

lines with high potential of quality. By taking history into consideration, Quality+History

is able to find good results after the first 100 seconds, however, because it doesn’t

consider cost, it prefers good but probably slow pipelines, it is not as good as

Quality+History+Cost in the early stage. Quality+History+Cost measures qual-
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ity, history and cost at the same time, so it achieves a good tradeoff between fast

response and good performance. Also, by preferring fast pipelines, we can execute

more pipelines and fine tune them, and have a better model of the search space.

Eventually, these methods all converge to high-quality solutions, while Random is still

not as good since the search space is infinite and it is difficult to find a good pipeline

without any guidance.

Physical Pipeline Plan Generation We ran our system with and without using

Bayesian Optimization for the tuning of hyper-parameters to justify the effectiveness

of our physical pipeline selection design choices: (1) Random, which picks random

hyper-parameters configurations; (2) Bayesian, which uses Bayesian Optimization to

find the next promising configuration of hyper-parameters.

As shown in Figure 8-6(b), after a very short amount of time (10 seconds) Bayesian

achieves much better performance. During the first several seconds, Random and

Bayesian are pretty comparable since Bayesian essentially does random search at

first to learn about the hyperparameter space.

Pipeline Pruning We ran our system with and without using Adaptive Pipeline

Selection to evaluate the effectiveness of our pipeline early termination method. We

compare two modes: (1) NoPruning, which just trains a pipeline on the train dataset

and tests it on the validation dataset without pruning anything; (2) Adaptive Pipeline

Selection APS, which prunes unpromising pipelines.

Using APS we are able to to test much more pipelines, obtaining better solu-

tion in shorter amount of time as depicted in Figure 8-6(c). However, as time goes

on NoPruning performances eventually will converge to APS ones: this is due to a

diminishing returns effect. Testing more and more pipelines leads to decreasing im-

provements, since the physical pipelines search space has been gradually covered.

8.4 Additional Experiments

8.4.1 Parameter Sensitivity

Throughout the thesis we used β = 0.5 and γ = 0.5 to balance exploration vs ex-

ploitation and general pipelines vs data-specific pipelines. In the following, we take
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a closer look on how these two parameters influence the system performance.

In Figure 8-7(a) we analyze the impact of β while keeping γ constant at 0.5. As

it can be seen, β = 1.0 achieved the best performance in the beginning (lower means

better) as it exploits previous good solutions, while β = 0.0 was the worst as caused

to try pipelines randomly. However, after 10 seconds, β = 0.5 performs better than

β = 1 as it achieves a good trade-off between exploitation and exploration.

Figure 8-7(b) shows the sensitivity to γ while keeping β at 0.5. Most interesting

is that γ = 1.0 works extremely well until the very end, while 0.5 performs particular

well at the end and reasonable before. The reason is simple: γ = 1.0 implies that

no data-specific pipelines are used, whereas γ = 0.5 gives data-specific pipelines a

chance to develop over time.

In the future, we plan to design strategies that adapt the value of β and γ over

time.

8.4.2 Halting Criterion

The Halting Criterion is motivated by the fact that for a given model the expected

validation error is larger than the expected training error, hence it is possible to use

the training error as a practical lower bound of the validation error. In Figure 8-8

we show the correlation plots for four of the datasets that we tested. In the plots

each point indicates a pipeline evaluation: blue points are partially trained pipelines;

orange points pipelines trained on the full training set. The points above the bisector

indicate pipelines for which the lower bound holds (the train error is smaller than the

validation error). Figure 8-8 and table 8.1 demonstrate that the bound holds for a

vast majority of the evaluated pipelines and datasets.

Additionally Figures 8-8(a), 8-8(b) and 8-8(c) show a high correlation between the

training and validation error for three tested datasets: this is a general phenomena

that we found occurring in the vast majority of the tested datasets, as it is possible to

see in correlation column of table 8.1. A high correlation between those two measures

indicates that increasing the training set leads to a more accurate learning of the

function f : X → Y . While a significantly high correlation between training and

validation error occurs in the vast majority of the tested instances, for particularly

ill-formed datasets (where the signal in the covariates is not sufficient or well formatted
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Figure 8-7: Parameter sensitivity: (a) Rank for different β values (with 90% confi-
dence bands). The higher the β the more exploitation, the lower the more exploration.
(b) Rank for different γ values (with 90% confidence bands). The higher γ the more
general pipelines are tried, the lower the more data-specific pipelines.

to predict the target variable) this is not always the case. Sub-figure 8-8(d), displays

an instance with low correlation in which the trained models are not able to generate

an f that generalizes over the validation set and which incur in overfitting (low train

error, high validation error). However it is relevant to note that even in this scenario,

where two measure are not correlated, the train error can be still successfully used to

lower bound the validation error.

Datasets
Correctly
Bounded

Pipelines (%)

Training-
Validation
Correlation

Regression 40 75.6 0.867

Classification 110 85.3 0.736

Total 150 83.9 0.771

Table 8.1: Training vs. Validation error: Each dataset was trained on 400-3000
pipelines (5-95 percentiles). We present the percentage of cases for which validation
error was lower bounded by training error and the correlation between training and
validation error on those datasets.

8.4.3 Alternative Metric for Comparison

As we outlined previously, the DARPA metric is biased. Therefore, we calculated an

alternative metric from [31] for our comparison defined as:

podsAB =


max(sA,sB)
min(sA,sB)

sA ≥ sB

−max(sA,sB)
min(sA,sB)

sA < sB

(8.1)

where sA and sB are the F1 score or the negative MSE.
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(a) Dataset: Page
Blocks

(b) Dataset: Phe-
nome

(c) Dataset: Hill
Valley

(d) Dataset:
Anacalcat Data

Figure 8-8: Training vs. Validation error on 4 different datasets. Each point repre-
sents training and validation error for one pipeline evaluation: blue points are partially
trained pipelines; orange points represent pipelines trained on the full training set.
Pipelines that are represented above the first quadrant bisector have been correctly
bounded by the halting criterion.
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Alpine Meadow vs. Azure
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Alpine Meadow vs auto-sklearn

-103 -102 -101 -1000100 101 102 103

pods score

better (94)

same (9)
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Alpine Meadow vs. TPOT

Figure 8-9: Evaluation of Alpine Meadow with different systems. Shows the podsAB
scores computed as Alpine Meadow ’s score over the other system’s score, and scores
are discretized into “better’: Alpine Meadow outperforms other system, “same”:
scores are equal, and “worse”: Alpine Meadow performs worse than other system.
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Figure 8-10: Shows the podsAB scores of each system averaged over all datasets over
time, where the podsAB scores are computed as each system over the hand-made
solutions (higher is better).
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Figure 8-11: Evaluation of Caching

We replot results from Figure 8-2 in Figure 8-9 and results from Figure 8-3(c)

in Figure 8-10. As we can see, the overall result didn’t change much even using the

more unbiased metric. Alpine Meadow is able to produce results better than baseline

scores in just a couple of seconds, and is also significantly better than auto-sklearn

and TPOT.

8.4.4 Caching and Incremental Computation

Many pipelines the AutoML tools try share the exact same operation. Therefore,

caching can tremendously help to increase the number of pipelines a system can eval-

uate in a given timeframe. Moreover, Alpine Meadow incrementally increases the

sample size over time for all promising pipelines. As a result, similar to caching,

incremental computation of operations can also significantly increase the number of

pipelines the system can test. However, both caching as well as incremental compu-

tation is not possible with the standard Scikit-learn operations and without changes

to the runtime environment, making it very hard to achieve fair comparison against
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other AutoML tools. We therefore decided to not evaluate the effect of caching and

incremental computation when comparing our system against other baselines.

However, as our system does support both, caching and incremental computation,

we want to give at least a high-level overview on how these techniques work in Alpine

Meadow and how they compare to alternative approaches, such as [32].

Alpine Meadow supports two main types of caching:

Inter-Pipeline Caching: Alpine Meadow caches intermediate results of each

primitive, such that other pipelines can directly use them without re-computation.

For example, if feature-scaling was performed or we use a pre-trained neural net to

add additional features, we cache the output such that we don’t need to run it again

for the same input data. While we only found a moderate impact for operations like

feature scaling, it can have a huge impact for neural networks, which we for example

use for image classification problems.

Intra-Pipeline Caching Since we train pipelines on increasingly larger samples

in Algorithm 4, and smaller samples are always covered by bigger samples, we can

utilize this by doing training in an incremental way. Here, we distinguish two cases:

(1) Incremental operator: If we know that an operator is incremental we simple

continue the training based on the previous model state if all previous operations

are also incremental. Even in cases where the previous operations in the pipeline

are not incremental, we might reuse the model state with the assumption that it

converges faster from that state. For example, with most gradient descent-based

training algorithms this is often the case. However, this requires that the system has

access to the internal state of an algorithm. We support this with our own algorithms,

but not with the scikit-learn default algorithms.

(2) Non-Incremental operator: For non-incremental operators we observe

the state-change over the increasing sample-sizes and based on it decide if we re-use

a result. For example, a min-max feature scaler requires to determine the minimum

and maximum. If it changes, the entire feature needs to be reprocessed. If not, it

can be made incremental. However, after a certain data-size even a change in the

minimum or maximum rarely changes the overall of performance of an pipeline. This

observation allows us to do “approximate”-caching; re-use results even if the data

would slightly change. In our current implementation, we manually tag operations if
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they are incremental and/or allow for strict or “approximate” caching.

Note, that none of these techniques were used as part of the experiments in Chap-

ter 8. Also note, that our techniques do re-use on the operator level, which have to

be annotated, rather than the more advanced caching/re-use, which is possible on

the algebra level [32].

Initial results To evaluate how inter and intra-pipeline caching can improve the

performance, we conducted a small experiment with an image classification pipeline.

This pipeline uses a pre-trained neural network, i.e., an NN operator, to extract high-

level features, which are then used by a traditional classifier. Here, the NN operator

allows for intra-pipeline caching as well as inter-pipleine caching as it is an incremental

operator. More precisely, every time the sample is increased, we reuse the feature for

data items, which were already included in the previous sample; recall that every

increased sample contains all items from the previous smaller sample. Figure 8-11

shows that for this pipeline intra-caching helps to reduce the training time by up to

33% when increasing the sample size.

Besides expensive primitives or primitives that support incremental training by

nature, we also did experiments for encoding operations (e.g., label encoding and

one-hot encoding) and non-Incremental operator caching, e.g., scaling functions, and

found that the performance improvement with caching is rather small. The reason

is, that compared to the actual training of the model, those operations are often

relatively fast.

In the future, we plan to further develop our caching and incremental computation

techniques. Especially, we believe that there is a lot of potential for non-incremental

caching for more complex operations.
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Chapter 9

Related Work

AutoML Systems: Most automated ML systems focus on automated learning

algorithm selection and hyper-parameter tuning [33, 34, 35, 24, 14, 36, 37] to make

machine learning curation fully automated for non-ML experts.

Arguable most related to our approach is Auto-sklearn for which we explained the

differences in depth in Chapter 7.

Spark TuPAQ [33] and Hyperband [10] use variations of multi-armed bandit

(MAB) algorithm to better allocate computational resources for hyper-parameter

tuning. However, their search space is limited to hyper-parameter sets for a few (of-

ten, user specified) learning algorithms. The output ML pipeline is not practical in

that the real-world problems require end-to-end pipeline curation with careful feature

engineering/selection and data transformation. One major drawback of MAB-based

approach is that the number of arms (a unique configuration/pipeline) explodes with

the size of the search space, and the total number of arms can easily exceed the mem-

ory size for a full search space with models, hyper-parameters and pre-processors.

Auto-WEKA [11, 12] or its sister package Auto-sklearn [13] solves the problem

of learning algorithm selection and their associated hyper-parameter optimization

in a combined search space. They also consider various feature selection and data

transformation methods to generate end-to-end ML pipelines. Auto-WEKA uses Se-

quential Model-based Algorithm Configuration (SMAC) to explore the large search

space, which is partly discrete and conditional as each selected algorithm has a dif-

ferent set of associated hyper-parameters. The idea is that, instead keeping track
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of all the possible configurations, the search moves towards a more promising re-

gion based on the previous search and evaluation results. Unfortunately, standalone

SMAC optimization for the large search space can still run for hours if not days. In

addition, Auto-WEKA and its search space construction is limited to classification

and regression problems only.

TPOT [29] is a tree-based pipeline optimization tool using genetic programming

while requiring little to no input nor prior knowledge from the user.

Microsoft has recently introduced an AutoML tool via Azure, based on the work

of [30]. They build predictive ML pipelines combining collaborative filtering and

Bayesian Optimization (BO). In particular they model the search space as probability

distribution defined by a Probabilistic Matrix Factorization [38] and than use expected

improvement as acquisition function to choose the most promising pipelines.

In Alpine Meadow , we combine BO with MAB to construct more compact (and

dense) search space for Bayesian Optimization, which results in more accurate and

efficient search. Additionally, the current implementation can work with existing

(WEKA [39] and Scikit-learn [40]) ML libraries as well as custom ML primitives for

more complex problems. As a result, Alpine Meadow can support more complex

problem types (e.g., graph matching, image and audio classification, etc.), and more

importantly, Alpine Meadow finds a comparable ML pipeline much more efficiently

and can progressively improve the quality of the pipeline.

The interactivity aspect differentiates Alpine Meadow from other systems: we

design time-based cost models preferring fast pipelines early on, incremental training

pipelines, and pipeline early termination to provide better interactivity.

Human-In-The-Loop Data Analytics: There are tools and systems that focus

on the human-in-the-loop aspect of data science. Hellix aims to accelerate the iter-

ative ML model training with responsive user feedback [41]. Vizdom [2] provides a

unique pen-and-touch interface for the user to easily construct ML workflows and in-

teractively refine the analytics/ML pipelines. Most industry cloud ML services, such

as TensorFlow [42], Amazon SageMaker and Azure Machine Learning [30], fall into

this category, in that they provide fully-managed environment for ML applications.

Unlike systems, the focus is not automated end-to-end pipeline curation; the services

provide programmable APIs or web-based interface for ML workflow construction
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and managed computing resources for the deployment. Alpine Meadow targets do-

main experts or users without ML expertise, and instead of requiring the user to

construct a working ML workflow with selected algorithms and pre-processors, the

system generates one based on the problem description and the data.

Neural Architecture Search: Also related to our work is neural architecture

search, in that we consider deep neural networks as one of the learning algorithms.

Alpine Meadow currently uses transfer learning [43], a general framework for re-

using models leaned in one task for other tasks, in order to quickly train a neural

architecture model. This limits the search space to a fixed architectures (e.g., the

depth and width of hidden layers, skip connections). Neural networks are hard to

design from scratch, and there are many proposed solution using similar Bayesian

Optimization [44, 45] or Reinforcement Learning techniques [14]. In the future, we

will integrate some of the automated neural architecture design techniques for the

tasks where deep learning is known to perform best.
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Chapter 10

Conclusion and Future Work

We have discussed a new approach to Interactive Automated Machine Learning. This

low-latency automatic selection, based on Multi-Armed Bandits, Bayesian Optimiza-

tion and Meta-Learning theory, efficiently explores the pipeline search space and

enables domain experts to bring value to the optimization process. We have tested

Alpine Meadow on datasets with very heterogeneous characteristics, from sample size

to feature types. Our experiments show that when compared against state-of-the-art

systems or expert-solutions, Alpine Meadow generally generates better results in a

shorter amount of time. Nevertheless, the current implementation of Alpine Meadow

leaves some interesting open questions.

First of all, we have found that for many datasets the lack of sufficient informa-

tion/signal in the data is a major reason for unsatisfactory performances. This issue

can take the form of a small training set, inadequate or missing features, or simply

an excess of noise. We plan to address those problems by adding external (relevant)

information to the dataset, performing what in jargon is called Data Augmentation.

For example Alpine Meadow already boosted the performances of an hand-wrist-size

image regression problem using a pre-trained ResNet neural network to extract high-

level features from the small train set (just 100 images). Given such encouraging

results, we plan to apply Data Augmentation to a broader class of tasks under the

form of feature extraction, feature addition and sample enlargement . Second, we

want to explore new types of strategies for our logical pipeline and physical pipeline

optimizer. We plan to investigate a new scoring model for dataset similarity in or-
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der to find relevant datasets with better precision. We also plan to examine more

sophisticated early termination techniques by leveraging shared statistics among the

pruning threads. Finally, we aim to support Neural Network architecture exploration

and compare our system against existing frameworks.
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