
1

K-Join: Knowledge-Aware Similarity Join
Zeyuan Shang, Yaxiao Liu, Guoliang Li, Jianhua Feng

Abstract—Similarity join is a fundamental operation in data cleaning and integration. Existing similarity-join methods utilize the string
similarity to quantify the relevance but neglect the knowledge behind the data, which plays an important role in understanding the data.
Thanks to public knowledge bases, e.g., Freebase and Yago, we have an opportunity to use the knowledge to improve similarity join. To
address this problem, we study knowledge-aware similarity join, which, given a knowledge hierarchy and two collections of objects
(e.g., documents), finds all knowledge-aware similar object pairs. To the best of our knowledge, this is the first study on
knowledge-aware similarity join. There are two main challenges. The first is how to quantify the knowledge-aware similarity. The
second is how to efficiently identify the similar pairs. To address these challenges, we first propose a new similarity metric to quantify
the knowledge-aware similarity using the knowledge hierarchy. We then devise a filter-and-verification framework to efficiently identify
the similar pairs. We propose effective signature-based filtering techniques to prune large numbers of dissimilar pairs and develop
efficient verification algorithms to verify the candidates that are not pruned in the filter step. Experimental results on real-world datasets
show that our method significantly outperforms baseline algorithms in terms of both efficiency and effectiveness.

F

1 INTRODUCTION

As an important operation in data cleaning and inte-
gration, similarity join has attracted significant attention
from the database community. It has widespread real
applications such as web clustering, duplicate detection,
and collaborative filtering [3], [14]. Given two collections
of objects, similarity join aims to find all similar pairs
from the two collections. There are many functions to
quantify the similarity between objects, such as Jaccard,
Cosine and edit distance [7], [20], [13], [16]. However
these functions only utilize the string similarity to quan-
tify the similarity between objects but neglect the knowl-
edge behind the data, which plays an important role in
understanding the data. For example, a startup, Factual
(www.factual.com), aims to integrate the crawled points
of interests (POIs) to remove duplicates. Consider two
crawled POIs “Californian food at Fillmore st”
and “American food at Ellis dr”. Their string sim-
ilarity is rather small. However they actually refer to the
same POI, because Californian food is a sub-category
of American food, Ellis st and Fillmore dr are
very close, and the POI is at their intersection. If we have
such background knowledge, we can utilize the knowledge
to quantify their similarity and integrate them as the same
POI. The knowledge hierarchy can also benefit other appli-
cations, such as entity resolution and clustering.

Thanks to the public knowledge bases, e.g., Freebase and
Yago, we have an opportunity to utilize the knowledge to
improve similarity join. For example, given Freebase, we can
infer that the similarity between “Californian food”
and “American food” is large, and so are “Fillmore
st” and “Ellis dr.” To achieve this goal, in this paper
we study the problem of knowledge-aware similarity join,
which, given a knowledge hierarchy and two collections

• Zeyuan Shang, Yaxiao Liu, Guoliang Li, and Jianhua Feng
are with the Department of Computer Science, Tsinghua
University, Beijing, China. E-mail: zeyuanxy@gmail.com;
liuyx12@mails.tsinghua.edu.cn;{liguoliang,fengjh}@tsinghua.edu.cn.
Corresponding Author: Yaxiao Liu.

of objects (e.g., POIs), finds all knowledge-aware similar
object pairs. Note that our method can facilitate many real-
world applications. For example, Yelp wants to classify
similar restaurants together to improve restaurant recom-
mendations, and Amazon wants to classify similar products
together using the knowledge information.

To the best of our knowledge, this is the first study
on knowledge-aware similarity join. There are two main
challenges to address this problem. The first is how to
quantify the knowledge-aware similarity. The second is how
to efficiently identify the similar pairs. To address these
challenges, we utilize the knowledge hierarchy to quantify
the knowledge-aware similarity and propose a new sim-
ilarity metric to compute knowledge-aware similarity. We
then devise a filter-and-verification framework to efficiently
identify the similar pairs. We devise signature-based filter-
ing techniques to prune large numbers of dissimilar pairs
and develop efficient verification algorithms to verify the
candidates that are not pruned in the filter step.

To summarize, we make the following contributions.
(1) We propose a knowledge-aware similarity metric to
quantify the similarity based on knowledge hierarchy and
formulate the knowledge-aware similarity join problem.
To the best of our knowledge, this is the first work on
knowledge-aware similarity join.
(2) We propose a filter-and-verification framework to ef-
ficiently identify the similar pairs. The filter step prunes
many dissimilar pairs and the verification step verifies the
candidate pairs that are not pruned in the filter step.
(3) In the filter step, we generate high-quality signatures
based on the knowledge hierarchy such that if two objects
have no common signatures, they cannot be similar. We
utilize these signatures to prune dissimilar pairs.
(4) It is rather expensive to directly compute the knowledge-
aware similarity and we propose an adaptive framework to
verify the candidates. We estimate the upper bounds and
lower bounds of candidate pairs. We utilize upper bounds
to prune dissimilar pairs and use lower bounds to avoid
computing the knowledge-aware similarity.
(5) We have conducted an extensive set of experiments on

real datasets. Experimental results show that our method
significantly outperforms the baseline algorithms in terms
of both efficiency and effectiveness.

The rest of the paper is organized as follows. We formu-
late the problem and review related works in Section 2. We
introduce the filter-and-verification framework in Section 3.
The filtering techniques are proposed in Section 4 and the
adaptive verification algorithm is presented in Section 5.
We make discussions in Section 6. Experimental results are
reported in Section 7. We conclude in Section 8.

2 PRELIMINARIES

In this section, we first define the knowledge-aware sim-
ilarity (Section 2.1) and then formulate our problem (Sec-
tion 2.2). Finally, we review the related work (Section 2.3).

2.1 Knowledge-Aware Similarity
We model each object (e.g., a POI) as a set of elements (e.g.,
tokens) by tokenizing the object. We first discuss how to
quantify the similarity between elements and then propose
a knowledge-aware similarity metric for objects.

2.1.1 Knowledge-Aware Similarity For Elements
We model a knowledge hierarchy as a tree structure T and
how to support the directed acyclic graph (DAG) structure
will be discussed in Section 6.5. Given two elements ex, ey∗,
we first map them to tree nodes in T . Here we assume that
each element matches a single node and how to support
the case that each element matches multiple tree nodes
will be discussed in Section 6.4. If the context is clear, we
also use ex and ey to denote the corresponding matched
nodes. Let LCAex,ey denote their lowest common ancestor
(i.e., the common ancestor of the two nodes and any of
its descendant will not be a common ancestor of the two
nodes), and dex denote the depth of node ex (the depth
of the root is 0). Intuitively, the larger dex,ey = dLCAex,ey
is, the two elements are more similar. Next we define the
knowledge-aware similarity.

Definition 1 (Knowledge-Aware Similarity for Elements).
Given a knowledge hierarchy T and two elements ex and ey ,
their knowledge-aware similarity is defined as

SIM(ex, ey) =
dex,ey

max(dex , dey)
. (1)

Consider two elements BurgerKing and KFC. Their
depths are 4 and their LCA is node Fastfood as shown
in Figure 1. Their knowledge-aware similarity is 3

4 .
We can compute the knowledge-aware similarity be-

tween two elements ex and ey as follows. We first get the
depths of ex and ey and then compute their LCA in a
bottom-up manner. The time complexity is O(dex + dey).

An element may map to multiple tree nodes due to (1)
an element may appear in multiple nodes; (2) an element
may have synonyms; and (3) an element may have typos
and may map to multiple tree nodes that approximately
match the element so as to tolerate typos). In this case,

∗. We use the leaf nodes of KB as a set of entities, and then for each
record, we extract the entities as the elements. (For the tokens that do
not match any entity, we also take them as elements.)

we enumerate every node of an element and compute the
maximum similarity, i.e.,

SIM(ex, ey) = max(e′x,e′y)
de′x,e′y

max(de′x , de′y)
ϕ(ex, e

′
x)ϕ(ey, e

′
y) (2)

where e′x and e′y are any mapping nodes of ex and ey respec-
tively, and ϕ(ex, e

′
x) is the similarity between ex and e′x. If

ex = e′x or they are synonyms, ϕ(ex, e′x) = 1; otherwise, we
utilize normalized edit distance (edit similarity) to quantify
their similarity, i.e., ϕ(ex, e′x) = 1 − ED(ex,e

′
x)

max (|ex|,|e′x|)
, where

ED(ex, e
′
x) is the edit distance of ex and e′x and |ex| is the

length of ex. For example, the edit distance of “PizzaHut”
and “PizzaHat” is 1. Their edit similarity is 7

8 .

2.1.2 Knowledge-Aware Similarity For Objects
Given two objects Sx and Sy , to compute their similarity,
we construct a bigraph G = ((Sx, Sy), E), where E is the
edge set. If an element in Sx is similar to an element in
Sy , there is an edge between them whose weight is the
knowledge-aware similarity between the two elements. To
avoid involving dissimilar pairs, we remove all the edges
whose weights are smaller than a given threshold δ.

To avoid mapping an element from one object to multi-
ple elements in the other object, we use the graph matching
to compute the similarity. A matching in a bigraph is a set of
edges without common elements, and the maximum weight
matching is the matching with the maximum edge weight.
We use the maximum weight matching ofG as the fuzzy overlap
of Sx and Sy , denoted by Sx∩̃δSy . The Hungarian algorithm
can be used to solve the maximum weight matching prob-
lem, with the time complexity of O(|V |2|E|), where |V | is
the number of elements in bigraph G and |E| is the number
of edges in bigraph G. If we denote |Sx|(|Sy|) as the number
of elements in Sx(Sy), the time complexity of finding the
maximum weight matching is O((|Sx|+ |Sy|)2|E|).

Using the fuzzy overlap, we define knowledge-aware sim-
ilarity on two objects. Here we take Jaccard as an example
and how to support other metrics is discussed in Section 6.3.

Definition 2 (Knowledge-Aware Similarity for Objects).
Given a knowledge hierarchy T , two objects Sx and Sy , and
an element similarity threshold δ, the knowledge-aware similarity
between Sx and Sy is defined as

SIMδ(Sx, Sy) =
||Sx∩̃δSy||

|Sx|+ |Sy| − ||Sx∩̃δSy||
. (3)

where |Sx| is the size of Sx and ||Sx∩̃δSy|| is the sum of
the weights of edges in the maximum matching.

Consider two objects S1 and S4 in Table 1. If δ = 0.5,
their bigraph is shown in Figure 2. The fuzzy overlap of S1

and S4 is ||S1∩̃δS4|| = 3
4 + 3

5 = 27
20 . Thus SIMδ(S1, S4) =

||S1∩̃δS4||
|S1|+|S4|−||S1∩̃δS4||

=
27
20

2+3− 27
20

= 27
73 .

2.2 Knowledge-Aware Similarity Join
Based on the above notations (also shown in Figure 3), we
define the problem of knowledge-aware similarity join.

Definition 3 (Knowledge-Aware Similarity Join). Given a
knowledge hierarchy T , two object sets R and S , an element
similarity threshold δ and an object similarity threshold τ , a
knowledge-aware similarity join finds all similar pairs 〈r, s〉 ∈
R × S , such that SIMδ(r, s) ≥ τ .

2

TABLE 1
Examples (δ = 0.7, τ = 0.6, Underline: Removed by Weighted Path Prefix).

ID Objects Node Signature Node Prefix (Deep) Path Signature (Deep) Path Prefix
S1 {BurgerKing,

MountainView}
{Fastfood, CA} {Fastfood} {BurgerKing, MountainView,

SanFrancisco, Fastfood}
{BurgerKing, MountainView,
SanFrancisco}

S2 {Pizza, PaloAlto,
Brooklyn}

{Pizza, NY, CA} {Pizza,
NY}

{Brooklyn, PaloAlto, Pizza,
SanFrancisco, NewYork}

{Brooklyn, PaloAlto, Pizza,
SanFrancisco}

S3 {Fastfood,
GoogleHeadquarters}

{Fastfood, CA} {Fastfood} {GoogleHeadquarters,
MountainView, Fastfood}

{GoogleHeadquarters,
MountainView}

S4 {PizzaHut, KFC, CA} {Pizza,
Fastfood, CA}

{Pizza,
Fastfood}

{PizzaHut, CA, KFC, Pizza,
Fastfood}

{PizzaHut, CA, KFC, Pizza}

S5 {Pizza,
GoogleHeadquarters}

{Pizza, CA} {Pizza} {GoogleHeadquarters,
MountainView, Pizza}

{GoogleHeadquarters,
MountainView}

S6 {Fastfood, Manhattan} {Fastfood, NY} {Fastfood} {Manhattan, Fastfood, NewYork} {Manhattan, Fastfood}
S7 {Brooklyn, Food} {Food, NY} {Food} {Food, Brooklyn, NewYork} {Food}
S8 {Pizza, KFC, Dominos,

SanFrancisco, Manhattan,
Brooklyn}

{Pizza, Pizza,
Fastfood, NY,
NY, CA}

{Pizza,
Pizza,
Fastfood}

{Dominos, Brooklyn, KFC, CA,
Manhattan, Pizza, Pizza,
SanFrancisco, Fastfood,
NewYork, NewYork}

{Dominos, Brooklyn, KFC, CA,
Manhattan, Pizza, Pizza,
SanFrancisco}

S9 {Fastfood, PizzaHut,
BurgerKing, PaloAlto,
MountainView, NewYork}

{Pizza,
Fastfood,
Fastfood, NY,
CA, CA}

{Pizza,
Fastfood,
Fastfood}

{PaloAlto, NY, BurgerKing,
PizzaHut, MountainView, Pizza,
SanFrancisco, SanFrancisco,
Fastfood, Fastfood, NewYork}

{PaloAlto, NY, BurgerKing,
PizzaHut, MountainView, Pizza,
SanFrancisco, SanFrancisco}

Root

Food Location

WesternFood

Fastfood Pizza

BurgerKing KFC PizzaHut Dominos

US

CA NY

SanFrancisco

MountainView

GoogleHeadqueaters

NewYork

ManhattanPaloAlto Brooklyn

Fig. 1. A Knowledge Hierarchy.

BurgerKi
ng

KFC

CA

PizzaHu
t

0.5

0.75

Mountai
nView 0.6

S1S1 S4S4

Fig. 2. Bigraph for Two Objects (δ=0.5).

Notation Description
S an object (a set)
e an element
de the depth of e

LCAex,ey the LCA of ex and ey
dex,ey the depth of LCAex,ey
ge node signature of e
GS node signature set of S
ĜS the node prefix of S
pe path signature of e
PS path signature set of S
P̂S path prefix of S
τSx dτ |Sx|e
τSx,Sy d τ

1+τ (|Sx|+ |Sy|)e
Fig. 3. Notations.

For example, consider the objects in Table 1. Suppose
δ = 0.7 and τ = 0.6. S1={BurgerKing, MountainView},
and S3={Fastfood, GoogleHeadquarters}.
SIM(BurgerKing, Fastfood)= 3

4 . SIM(MountainView,
GoogleHeadquarters)= 5

6 . ||S1∩̃δS3|| = 3
4 + 5

6 = 19
12 .

SIMδ(S1, S3) = |S1∩̃δS3|
|S1|+|S3|−|S1∩̃δS3|

=
19
12

2+2− 19
12

= 19
29 > τ .

Thus 〈S1, S3〉 is an answer.
Without loss of generality, we first focus on self join (R =

S) and discuss how to join two sets (R 6= S) in Section 6.1.

2.3 Related Work
Similarity Join. There were many studies on string similar-
ity joins [3], [16], [28], [27], [36], [37], [5], [8], [17], [18], [10].
Given two sets of strings, similarity join finds all similar
pairs. Jiang et al. provided an experimental survey in [12]
to compare different similarity join algorithms. The widely-
adopted technique to support similarity join was prefix
filtering [3]. The basic idea of prefix filtering is that, it
first generates a prefix for each object and if their prefixes
have no overlap, they cannot be similar. Existing studies
utilized this property to prune dissimilar pairs. Xiao et al.
proposed the position filter [37] and mismatch filter [36] to
enhance the prefix filter. Wang et al. [27] proposed a trie-
based method to directly compute similar pairs. Li et al. [16]
proposed a partition-based method. Two methods were pro-
posed to improve the quality against traditional similarity
functions. Wang et al. [28] proposed to tolerate edit-distance
errors in set similarity metrics, e.g., allowing approximate
matching when computing set similarity. Arasu et al. [2]

and Lu et al. [19] proposed transformation-based methods
which used synonym rules to improve the quality. Different
from them, we propose a new similarity metric based on
the knowledge to improve the quality. We also devise a
filter-and-verification framework to improve the efficiency.
Our method significantly outperforms them in terms of both
efficiency and effectiveness (see Section 7).
Similarity Search. There are some similarity search algo-
rithms [15], [29], [20], [40], [6], [38], which, given a set of
strings and a query string, finds all similar strings to the
query. Existing studies employed a filter-and-verification
framework, where the filter step utilizes a lightweight filter
to prune large numbers of dissimilar strings, and the verifi-
cation step verifies the candidates that are not pruned in the
filter step. Many effective filters have been devised to prune
dissimilar strings. Sarawagi et al. [21] proposed a count filter
that pruned dissimilar strings without enough common
signatures to the query. Based on the count filter, Li et al. [14]
developed several efficient list-merge algorithms. Li et al.
[15] used variable-length grams to support string similarity
search. Hadjieleftheriou et al. [11] proposed a hash-based
method to estimate the number of results. Recently, Wang
et al. [29] and Qin et al. [20] extended join techniques to
support similarity search. Wang et al. [29] improved prefix
filtering and proposed an adaptive framework. Zhang et
al. [40] proposed a B+-tree structure to support similarity
search and join. Qin et al. [20] devised an asymmetry
signature to improve prefix filtering. There are some studies
on top-k similarity search [39], [7], [31], [26].
Entity Resolution. Entity resolution is a critical task in

3

data integration and cleaning [34], [32], [33]. It has been
extensively studied for decades and Elmagarmid et al. [9]
provide an excellent survey. Recently, there are some studies
on leveraging crowdsourcing to improve the quality of
entity resolution [25], [23], [24], [30]. Entity resolution is a
special case of our problem. If the knolwedge hierarchy is
well designed (e.g., the nodes with the same parent refer to
the same entity but not similar entities), our method can be
used to improve the quality of entity resolution.
Ontological Similarity. There are several studies[1], [4], [22]
on linking elements in a record to predefined entities in a
knowledgebase. Different from them, we aim to find similar
bases using knowledge bases.

3 THE K-JOIN FRAMEWORK
We propose a filter-and-verification framework. In the filter
step, we generate signatures for each object, such that if
two objects have no common signatures, they cannot be
similar. We take the objects pairs with common signatures
as candidates. The verification step verifies the candidates
by computing the real similarity. There are two main chal-
lenges: (1) devising an effective and lightweight filter that
can prune large numbers of dissimilar pairs with a little
cost; (2) developing efficient verification algorithms. To ad-
dress these challenges, we first propose a signature-based
filtering technique (Section 3.1) and then present a verifica-
tion algorithm (Section 3.2). Finally, we devise a filter-and-
verification algorithm (Section 3.3).

3.1 Signature-Based Filtering
Given a knowledge hierarchy T and an element similarity
threshold δ, for any two similar elements, we can esti-
mate the minimum depth of their lowest common ancestor
(LCA). Suppose ex and ey are two different elements, and
their element similarity is

dex,ey
max(dex ,dey)

≤ dex,ey
dex,ey+1 . If ex and

ey are similar, we have
dex,ey
dex,ey+1 ≥ δ, and dex,ey ≥ δ

1−δ .
Thus if two different elements are similar, the depth of their
LCA is at least dδ = d δ

1−δ e. For example, suppose δ = 0.7.
dδ = d 0.7

1−0.7e = 3. In other words, two different elements
whose LCA’s depth is smaller than dδ = 3 cannot be similar,
because their largest similarity is at most 2

2+1 < 0.7.
Based on this property, we propose a signature scheme.

Signature Scheme for Elements: For any element e with
depth de, if de < dδ , we select e as its signature, i.e., ge =
e. If de ≥ dδ , we select the ancestor of e whose depth is
dδ (denoted by edδ) as its signature, i.e., ge = edδ . As the
signature refers to a tree node, we call ge a node signature,
which is defined as bellow.

Definition 4 (Node Signature). Given an element e, its node
signature ge is defined as

ge =

{
e If de < dδ
edδ If de ≥ dδ

(4)

We can prove that, given two elements ex and ey , if they
are similar with threshold δ, their node signatures must be
the same, i.e., gex = gey , as formalized in Lemma 1.

Lemma 1. Given two elements ex and ey , if their node signatures
are different, they cannot be similar, i.e.,

If gex 6= gey , SIM(ex, ey) < δ.

Proof. Consider two similar elements ex and ey . If ex = ey ,
their node signatures must be the same. Next we consider
the case that ex 6= ey . In this case, we can prove that dex ≥
dδ . Because if dex < dδ , for any ex 6= ey ,

dex,ey
max(dexey)

≤
dδ
dδ+1 < δ. This conflicts with that ex and ey are similar.
Thus dex ≥ dδ . Similarly, we can prove that dey ≥ dδ . For
any elements with depth exceeding dδ , we generate the node
signature on the same depth. Thus their node signatures are
edδx and edδy . If the two node signatures are different, we can
also prove that ex and ey are not similar. Thus edδx = edδy .
Hence the Lemma is proved.

For example, consider elements e1=BurgerKing,
e2=KFC, e3=Manhattan. Suppose δ = 0.7. dδ = d δ

1−δ e = 3.
As shown in Figure 1, their node signatures are respectively
Fastfood, Fastfood and NY. As ge1 = ge2 , e1 and e2 may
be similar (SIM(e1, e2) =

3
4 > 0.7). As ge1 6= ge3 , e1 and e3

cannot be similar (SIM(e1, e3) = 0 < 0.6).
Signature Scheme for Objects: Given an object S, based
on the definition of SIMδ , if another object S′ is similar to
S, then S′ and S should have at least τS = dτ |S|e similar
elements, as |S∩̃δS′|

|S|+|S′|−|S∩̃δS′| ≥ τ and |S∩̃δS′| ≥ dτ |S|e. A
filtering strategy aims to find a subset of elements for each
object, called a prefix, such that if two objects are similar,
their prefixes must have similar elements. An intuitive idea
is to remove τS − 1 elements and select |S| − (τS − 1)
elements as the prefix, because if the two objects have no
similar elements in the prefix, they cannot have τS similar
elements (as the suffix only has τS − 1 elements). Based on
this idea, we propose a prefix based method.

Formally, given an object S, we generate its node sig-
nature set GS = ∪e∈S{ge}†. Then, we fix a global or-
der for the node signatures of all the elements, e.g., by
document frequency (df) in an ascending order. Then let
ĜS = GS [1, |S| − (τS − 1)], which is the subset of GS with
the first |S| − (τS − 1) node signatures. We call ĜS the node
prefix of node signatures of S, which is defined as below.

Definition 5 (Node Prefix). Given an object S, its node prefix
is ĜS = GS [1, |S| − (τS − 1)].

Then we can prove that if ĜSx ∩ ĜSy = φ, Sx and Sy
cannot be similar as stated in Lemma 2. The basic idea is
as follows. As ĜSx ∩ ĜSy = φ, without loss of generality,
assume the last signature in ĜSx is smaller than the last
signature of ĜSy . Then all the signatures in ĜSx are smaller
than the signatures inGSy−ĜSy . Thus we have ĜSx∩GSy =

φ. As |GSx − ĜSx | < τSx , |GSx ∩ GSy | = |ĜSx ∩ GSy | +
|(GSx−ĜSx)∩GSy | < τSx . As |GSx∩GSy | < τSx , Sx and Sy
have less than τSx common node signatures. Since elements
with different node signatures cannot be similar (Lemma 1),
the similarity between Sx and Sy is smaller than τ .

Lemma 2. Given two objects Sx and Sy , if their node prefixes do
not overlap, they cannot be similar, i.e.,

If ĜSx ∩ ĜSy = φ, SIMδ(Sx, Sy) < τ.

Proof. As ĜSx ∩ ĜSy = φ, without loss of generality, assume
the last signature in ĜSx is smaller than the last signature

†. Note that here we use a multi-set for GS . That is if gex = gey for ex ∈ S
and ey ∈ S, we keep both of them in the set.

4

of ĜSy . Then all the signatures in ĜSx are smaller than the
signatures in GSy − ĜSy . Thus we have ĜSx ∩GSy = φ. As
|GSx − ĜSx | < τSx , |GSx ∩ GSy | = |ĜSx ∩ GSy | + |(GSx −
ĜSx) ∩ GSy | < τSx . As |GSx ∩ GSy | < τSx , Sx and Sy
have less than τSx common node signatures. As elements
with different node signatures cannot be similar, Sx and Sy
have less than τSx similar elements.The similarity between
Sx and Sy must be smaller than τ .

Similarly, if the last signature in ĜSx is larger than the
last signature of ĜSy .Then all the signatures in ĜSy are
smaller than the signatures in GSx − ĜSx . Thus we have
ĜSy∩GSx = φ. As |GSy−ĜSy | < τSy , |GSy∩GSx | = |ĜSy∩
GSx |+ |(GSy − ĜSy) ∩GSx | < τSy . As |GSy ∩GSx | < τSy ,
Sx and Sy have less than τSy common node signatures. As
elements with different node signatures cannot be similar,
Sx and Sy have less than τSy similar elements. Thus the
similarity between Sx and Sy must be smaller than τ .
Filtering Strategy. Based on the node prefix, we propose a
filtering strategy. We first sort the node signatures for all the
elements and fix a global order. Then for each object S, we
take its first |S| − (τS − 1) node signatures as its node prefix
ĜS . For each signature in ĜS , the objects that also have
this signature are candidates of S. To facilitate finding the
candidates, for each node signature, we use an inverted list
to keep the objects that have this signature in their prefixes
and the details will be discussed in Section 3.3.

For example, consider two objects S1 and S2 in Ta-
ble 1. Suppose δ = 0.7 and τ = 0.6. The node signa-
ture is at level d 0.7

1−0.7e = 3. GS1
= {Fastfood,CA}.

GS2 = {Pizza,NY,CA}. ĜS1 = {Fastfood}. ĜS2 =
{Pizza, NY}. As ĜS1

∩ ĜS2
= φ, S1 and S2 cannot be

similar. After the filtering, the number of candidate pairs is
22. As there are 36 pairs, this method can prune 40% pairs.

3.2 Verification
Given a candidate pair Sx and Sy , we check whether they
are actually similar. A naive method is to directly compute
their similarity, and if the similarity exceeds the threshold
τ , the candidate pair is an answer. However it is rather
expensive to compute the similarity. To address this issue,
we propose an effective method to prune dissimilar pairs.

Based on the similarity definition, if |Sx∩̃δSy|
|Sx|+|Sy|−|Sx∩̃δSy|

≥
τ , |Sx∩̃δSy| ≥ τ

1+τ (|Sx| + |Sy|). We can estimate an upper
bound of |Sx∩̃δSy| and if the upper bound is smaller than
τSx,Sy=d τ

1+τ (|Sx| + |Sy|)e, we prune the pair. To this end,
we propose two methods to estimate an upper bound.

We first compute the node signature of each element.
Then, based on Lemma 1, two elements with different
signatures cannot be similar, and thus we can partition
the elements of Sx/Sy into different groups based on the
signatures of the elements, such that the elements in the
same group may be similar while the elements in different
groups cannot be similar. Formally, given two objects Sx and
Sy , we first generate the node signatures of each element in
Sx and Sy . For each node signature, we generate a group,
and the elements having this signature will be in this group.
Suppose there are m groups. We generate m groups for Sx
(Sy): S1

x, S
2
x, · · · , Smx (S1

y , S
2
y , · · · , Smy). Since the elements

in Six cannot be similar to the elements in Sjy for i 6= j, we
only need to consider the elements in Six and Siy . Obviously,

as there are |Six|(|Siy|) elements in Six(S
i
y), the similarity of

similar elements in this group is at most min(|Six|, |Siy|). In
other words, min(|Six|, |Siy|) is an upper bound of |Six∩̃δSiy|.
Based on these groups, we get an upper bound of |Sx∩̃δSy|,
i.e.,

∑m
i=1 min(|Six|, |Siy|) ≥ |Sx∩̃δSy|, proved as below.

Lemma 3. Given two similar objects Sx and Sy , and Six and Siy
(1 ≤ i ≤ m) are groups generated from Sx and Sy respectively
based on the node signatures, we have
m∑
i=1

min(|Six|, |Siy|) ≥ |Sx∩̃δSy| ≥ τSx,Sy = d τ

1 + τ
(|Sx|+|Sy|)e.

Proof. As Sx and Sy are similar, we have
|Sx∩̃δSy|

|Sx|+|Sy|−|Sx∩̃δSy|
≥ τ, then |Sx∩̃δSy| ≥ τ

1+τ (|Sx| + |Sy|).
Suppose there are m groups. We generate m groups
for Sx (Sy): S1

x, S
2
x, · · · , Smx (S1

y , S
2
y , · · · , Smy). Since the

elements in Six cannot be similar to the elements in Sjy
for i 6= j, we only need to consider the elements in Six
and Siy . Obviously, as there are |Six|(|Siy|) elements in
Six(S

i
y), the maximum matching of elements in these

two groups is at most min(|Six|, |Siy|). In other words,
min(|Six|, |Siy|) is an upper bounds of elements in Six and
Siy , i.e., min(|Six|, |Siy|) ≥ |Six∩̃δSiy|. Thus we can get an
upper bound of Sx and Sy , i.e.,

∑m
i=1 min(|Six|, |Siy|). Thus∑m

i=1 min(|Six|, |Siy|) ≥ |Sx∩̃δSy|.

Next, we propose a count-based pruning method.
Count Pruning. If

∑m
i=1 min(|Six|, |Siy|) is smaller than

τSx,Sy = d τ
1+τ (|Sx|+ |Sy|)e, we can prune 〈Sx, Sy〉.

For example, consider objects S1 and S6. Suppose
δ = 0.7 and τ = 0.6. GS1

={Fastfood, CA} and
GS6

={Fastfood, NY}. We partition them to three
groups. G1

S1
= {Fastfood}, G2

S1
= {CA}, G3

S1
= φ,

G1
S6

= {Fastfood}, G2
S6

= φ, G3
S6

= {NY}. Thus∑3
i=1 min(|Si1|, |Si6|) = 1 < τ

1+τ (|S1| + |S6|) = 3
2 , and we

can prune this pair. Using the count pruning, 16 pairs will
be pruned among the 22 candidates, and we only need to
compute the real similarity of 6 pairs.

If two elements share a common signature, this method
estimates their similarity as 1. However, the similarity be-
tween two elements that share the same signature may
be smaller than 1. Next we discuss how to compute the
maximum similarity of two elements. Given a group Six(S

i
y),

we partition them into two parts: (1) the exactly matching
elements Six ∩ Siy ; (2) the approximate matching elements
Six−Six ∩ Siy (Siy−Six ∩ Siy). The similarity of elements
in Six ∩ Siy is exactly 1. The maximum similarity of e

in Six−Six ∩ Siy to any element in Siy−Six ∩ Siy is de
de+1 .

Thus we estimate a tighter upper bound
∑m
i=1 |Six ∩ Siy| +

min(
∑
e∈Six−Six∩Siy

de
de+1 ,

∑
e∈Siy−Six∩Siy

de
de+1). If the bound

is smaller than τSx,Sy , we prune this pair (Lemma 4).

Lemma 4. Given two similar objects Sx and Sy , and Six and Siy
(1 ≤ i ≤ m) are generated groups from Sx and Sy respectively
based on the node signatures, we have
m∑
i=1

(
|Six∩Siy|+min(

∑
e∈Six−Six∩Siy

de
de + 1

,
∑

e∈Siy−Six∩Siy

de
de + 1

)
)

≥ |Sx∩̃δSy| ≥ τSx,Sy = d τ

1 + τ
(|Sx|+ |Sy|)e.

5

Algorithm 1: K-Join-FRAMEWORK(S , δ, τ)
Input: S : The set of objects

δ: The element similarity threshold
τ : The object similarity threshold

Output: A: The set of similar object pairs in S
Get a global order of node signatures;1

for each object Sx in S do2

ĜSx = first |Sx| − (τSx − 1) signatures of Sx;3

for each signature ge ∈ ĜSx do4

for each object Sy ∈ L(ge) do5

if VERIFY(Sx, Sy)=true then6

A = A ∪ (Sx, Sy);
L(ge)← Sx;7

Function K-Join-VERIFY(Sx, Sy)
Input: Sx, Sy : Two Objects
Output: True or False
if (Sx, Sy) is not verified, i.e., (Sx, Sy) 6∈ H then1

Split Sx/Sy into m subsets by node signatures ;2

ub=
∑m
i=1 |Six ∩ Siy|+3

min(
∑
e∈Six−Six∩Siy

de
de+1 ,

∑
e∈Siy−Six∩Siy

de
de+1);

if ub < τSx,Sy = τ
1+τ (|Sx|+ |Sy|) then4

H[(Sx, Sy)] = false ;
else5

if SIMδ(Sx, Sy) ≥ τ then H[(Sx, Sy)] = true ;6

else H[(Sx, Sy)] = false;

return H[(Sx, Sy)];7

Fig. 4. The K-Join Framework

Proof. Given a group Six(S
i
y), we partition them into two

parts: (1) the exactly matching elements Six ∩ Siy ; (2) the ap-
proximate matching elements Six−Six∩Siy (Siy−Six∩Siy). The
similarity of elements in Six ∩Siy is exactly 1. The maximum
similarity of e in Six−Six ∩Siy to any element in Siy−Six ∩Siy
is de
de+1 . Thus we estimate a tighter upper bound

∑m
i=1 |Six∩

Siy|+min(
∑
e∈Six−Six∩Siy

de
de+1 ,

∑
e∈Siy−Six∩Siy

de
de+1). Accord-

ing to the proof of Lemma 3, the lemma is proved.

Weighted Count Pruning. We improve the
count pruning technique by considering the
weight of each signature. If

∑m
i=1 |Six ∩ Siy| +

min(
∑
e∈Six−Six∩Siy

de
de+1 ,

∑
e∈Siy−Six∩Siy

de
de+1) is smaller

than τSx,Sy = d τ
1+τ (|Sx|+ |Sy|)e, we prune 〈Sx, Sy〉.

For example, consider two objects S1 and S4. As-
sume δ = 0.7 and τ = 0.6. GS1

={Fastfood,
CA} and GS4

={Pizza, Fastfood, CA}. We partition
them to three groups. G1

S1
= {Fastfood}, G2

S1
= φ,

G3
S1

= {CA}, G1
S4

= {Fastfood}, G2
S4

= {Pizza},
G3
S4

= {CA}. The count filtering cannot prune it as∑3
i=1 min(|Si1|, |Si4|) = 2 ≥ τ

1+τ (|S1| + |S64|) = 3
2 . How-

ever, based on the similarity pruning,
∑3
i=1

(
|Si1 ∩ Si4| +

min(
∑
e∈Si1−Si1∩Si4

de
de+1 ,

∑
e∈Si4−Si1∩Si4

de
de+1)

)
= 3

4 + 4
5 =

31
20 < τ

1+τ (|S1| + |S4|) = 15
8 , thus we can prune this pair.

After this process, the number of candidate pairs is 2.

3.3 The K-Join Algorithm
The pseudo code of the K-Join algorithm is illustrated
in Figure 4. It first generates the node signatures of each

element of each object and fixes a global order of all the
node signatures (line 1). Then for each object Sx, it generates
its node prefix ĜSx with the first |Sx| − (τSx − 1) signatures
(line 3). For each signature ge in ĜSx , the objects that share
signature ge are candidates of Sx. To efficiently get such
objects, we utilize an inverted list L(ge) to keep them. Thus
each object Sy on L(ge) is a candidate of Sx. Next we verify
(Sx, Sy). If the candidate is actually similar, we add it as a
result (line 6). Lastly, we append e on L(ge) (line 7).

The K-Join-VERIFY function verifies whether two ob-
jects Sx and Sy are similar. If (Sx, Sy) has not been verified,
we generate subsets of Sx and Sy based on their node signa-
tures (line 2). Then we estimate an upper bound (line 3). If
the upper bound is smaller than the threshold, the pair is not
similar (line 4). Otherwise, we compute the real similarity.
If the similarity exceeds the threshold, the pair is similar
(line 6); the pair is dissimilar otherwise (line 6). Finally, we
return the verification result (line 7).

4 THE DEPTH-AWARE FILTERING
The filtering method in the framework generates coarse-
grained signatures for small thresholds. For example, if
δ = 0.6, the generated node signature is at level d δ

1−δ e = 2.
Obviously for coarse-grained signatures, many dissimilar el-
ements may generate the same signature. Consider two ele-
ments e1= BurgerKing and e4=Dominos. Suppose δ = 0.6.
Their node signatures are both “WesternFood”, but their
similarity is SIM(e1, e4) = 2

4 = 0.5 < 0.6. Thus, for an
element e at level de, if de is far larger than 2, the node
signature is too coarse for the element. To address this issue,
we propose a depth-aware filtering method, which utilizes
the depth to generate the signature. This method generates
fine-grained signatures and can significantly reduce the
number of candidates. We first discuss how to generate
depth-aware signatures for elements (Section 4.1). Then we
discuss how to extend it to support objects (Section 4.2).

4.1 Path Signature for Elements
For each element, we generate a depth-aware signature
based on its depth. Consider an element ey with depth
dey . If another node ex with the same depth dex = dey
is similar to ey , we have dex,ey ≥ δdex , as SIM(ex, ey) =

dey,ey
max(dex ,dey)

≥ δ. Thus we can select edδdexey (the ancestor of
ey at level dδdexe) as the signature of ey . It is easy to prove
that for any two elements with the same depth, if they are
similar, they must share a common signature.

However, it is not enough to select a single signature
for each element. For example, consider another element ex
with depth dex < dey . ex selects edδdexex as its signature and

ey selects e
dδdey e
y as its signature. If dδdexe 6= dδdeye, the

two signatures are not the same. Thus even if ex and ey are
similar, they do not share a common signature. To address
this issue, we can also take edδdexey as ey’s signature. Thus
for any dex < dey , we generate a signature edδdexey for Sy .
We find that if dex is too small, ex cannot be similar to ey .
Thus we want to compute the minimum dex of elements that
can be similar to ey . Note that if dex < δdey , SIM(ex, ey) =

dex,ey
max(dex ,dey)

≤ dex
dey

< δ, and ex cannot be similar to ey .
Thus the minimum depth is δdey , and we only consider the
elements with depth dex s.t. dδdeye ≤ dex ≤ dey . Thus for

6

ey , its signatures include e
dδdδdey ee
y , e

dδdδdey ee+1
y , · · · , edδdey ey .

We call them path signatures.
The above method takes ey as a reference element.

Similarly, we can take ex as a reference element. Suppose
dex < dey . We generate signature e

δdey
x for ex. We also

want to compute the maximum depth of dey . As dex
dey
≥

SIM(ex, ey) =
dex,ey

max(dex ,dey)
≥ δ. The maximum depth is dex

δ .

Thus for ex, we generate the following signatures edδdexex ,
e
dδdexe+1
x , · · · , edexx . Since the former signatures have small

depth and the latter have large depth, we call the former
shallow path signatures (or shallow signatures for short), and
call the latter deep path signatures (or deep signatures for short).
They are two special instances of path signatures. Next we
formally define the shallow and deep signatures.

Definition 6 (Shallow Signatures). For element
e with depth de, its shallow signatures are pe =
{edδdδdeee, edδdδdeee+1, · · · , edδdee}.

Definition 7 (Deep Signatures). For element e with depth de,
its deep signatures are pe = {edδdee, edδdee+1, · · · , ede}.

For example, consider e1=BurgerKing. If δ = 0.6,
dδde1e = 3 and dδdδde1ee = 2. The shallow signatures
of e1 are {Fastfood, WesternFood} and the deep sig-
natures of e1 are {Fastfood, BurgerKing}. Similar-
ity for e4=Dominos, its shallow signatures are {Pizza,
WesternFood} and deep signatures are {Pizza,
Dominos}. Obviously the node and shallow signatures
cannot prune 〈e1, e4〉 as they share a node signature
WesternFood and a shallow signature WesternFood, but
the deep signature can prune the pai.
Filtering Strategy. Based on the shallow (or deep) signa-
tures, we propose a filtering technique. For each element,
we generate its shallow (or deep) signatures. If two elements
have no common shallow (or deep) signatures, they cannot
be similar as proved in Lemma 5. (Note that we do not need
to generate both shallow and deep signatures. Instead, we
only need to generate shallow or deep signatures.)

Lemma 5. Given two elements, if their shallow (or deep) signa-
tures have no overlap, they cannot be similar.
Proof. Given two elements ex and ey , as we use the parent
elements of ex (ey) whose depths are between [dδdexe, dex]
as the deep signatures of ex (ey), if their deep signa-
tures have no overlap, the depth of the LCA of ex and
ey must be smaller than max(dδdexe, dδdeye). Thus we

have SIM(ex, ey) =
dex,ey

max(dex ,dey)
≤ max(dδdexe,dδdey e)−1

max(dex ,dey)
<

max(δdex ,δdey)

max(dex ,dey)
≤ δ. So ex and ey are not similar. The proof

for shallow signatures is the same to the proof above.

Shallow Signatures vs Deep Signatures. We compare the
shallow and deep signatures. The number of shallow sig-
natures (i.e., δ(1−δ)de + 1) is smaller than that of deep
signatures (i.e., (1−δ)de + 1). However, the shallow sig-
nature is coarse-grained (with small depth) while the deep
signature is fine-grained (with large depth). For fine-grained
signatures, elements have low probability to be matched
and there are smaller numbers of candidates, and thus the
deep signatures have high pruning power. Next we use the
deep signature as an example to discuss how to generate the
prefix. The techniques can be used for shallow signatures.

4.2 Path Signature for Objects
We discuss how to generate the signatures of objects. Given
an object S, based on the definition of SIMδ , if another
object S′ is similar to S, then S′ and S should have at
least τS = dτ |S|e similar elements, as |S∩̃δS′|

|S|+|S′|−|S∩̃δS′| ≥ τ

and |S∩̃δS′| ≥ dτ |S|e. It is expensive to directly identify
the objects that have τS = dτ |S|e similar elements with
S. Instead, we can utilize the path signatures to efficiently
find such objects. To this end, for object S, we generate its
path signature set PS = ∪e∈Spe. Next we want to find a
prefix P̂S of PS , such that if two objects are similar, their
prefixes should have common signatures. An intuitive idea
is to remove τS − 1 elements and select |S| − (τS − 1)
elements as the prefix, because if the two objects have no
similar elements in the prefix, they cannot have τS similar
elements. However this idea relies on two conditions:
(1) In the suffix, there are τS−1 elements. That is even if the
suffix of Sx exactly matches that of object Sy , they still only
have τS − 1 similar elements. Thus if they are similar, they
should have at least one similar element in the prefix.
(2) The signatures are sorted based on a global order. If the
signatures are not sorted based on a global order, we cannot
select a prefix (as the prefix of Sx may have similar elements
in the suffix of Sy and vice versa).

If any condition is not true, this prefix based method
does not work. Next we propose an efficient method to
generate the prefix that satisfies these two conditions.

4.2.1 Path Prefix
Given an object S, we first generate the path signatures of
each element. We then sort the path signatures based on
their document frequency (df) in an ascending order. Thus
the signatures are sorted based on a global order and we can
guarantee the second condition.

Next we remove the signatures from the path signature
set PS in a reverse order. When we remove a signature, we
count the number of elements who have signatures removed
and check the number of removed elements. If the number
reaches τS = dτ |S|e, we will not remove the signature any
more and terminate the process, because if we remove such
signature, the suffix contains signatures of τS elements (the
suffixes of two objects can have τS similar elements). Then
the remainder signatures are in the prefix of S. In this way,
we can also guarantee the first condition.

Formally, let PS denote the set of path signatures of S,
PS [i, |PS |] denote the suffix of PS which is a subset of PS
from the i-th signature to the last signature, PS [1, i] denote
the prefix of PS which is a subset of PS with the first
i signatures. Let DISTELE(PS [i, |PS |]) denote the number
of distinct elements in PS [i, |PS |]. Then we can define the
prefix of path signatures, called path prefix.

Definition 8 (Path Prefix). Given an object S, the path prefix of
S is P̂S = PS [1, i|], such that

DISTELE(PS [i, |PS |]) = dτ |S|e and
DISTELE(PS [i+ 1, |PS |]) = dτ |S|e − 1

If the path prefixes of two objects have no overlap, the
two objects cannot be similar as stated in Lemma 6.

7

Lemma 6. Given two objects Sx and Sy , if their path prefixes do
not overlap, they cannot be similar, i.e.,

If P̂Sx ∩ P̂Sy = φ, SIMδ(Sx, Sy) < τ.

Proof. As P̂Sx ∩ P̂Sy = φ, without loss of generality, assume
the last signature in P̂Sx is smaller than the last signature
of P̂Sy . Then all the signatures in P̂Sx are smaller than the
signatures in PSy − P̂Sy . Thus we have P̂Sx ∩ PSy = φ.
As DISTELE(PSx − P̂Sx) < τSx , DISTELE(PSx ∩ PSy) =

DISTELE(P̂Sx ∩ PSy)+DISTELE((PSx − P̂Sx) ∩ PSy) < τSx .
As DISTELE(PSx ∩ PSy) < τSx , Sx and Sy have less
than τSx similar elements. Thus the similarity of Sx
and Sy must be smaller than τ . Similarly, if the last
signature in P̂Sx is larger than the last signature of
P̂Sy . Then all the signatures in P̂Sy are smaller than
the signatures in PSx − P̂Sx . Thus P̂Sy ∩ PSx = φ.
As DISTELE(PSy − P̂Sy) < τSy , DISTELE(PSy ∩ PSx) =

DISTELE(P̂Sy ∩ PSx)+DISTELE((PSy − P̂Sy) ∩ PSx) < τSy .
As DISTELE(PSy ∩ PSx) < τSy , Sx and Sy have less than
τSy similar elements. Thus Sx and Sy cannot be similar.

For example, consider object S4. Assume δ = 0.7
and τ = 0.6. PS4 = {PizzaHut, CA, KFC, Pizza,
Fastfood}. τS4 = d0.6 · 3e = 2. We first remove the
last signature Fastfood and DISTELE(PS [6, 6]) = 1.
Next we try to remove the fourth signature Pizza.
As Pizza and Fastfood are generated from different
elements, DISTELE(PS [5, 6]) = 2. Thus we cannot
prune the fourth signature from PS4 and thus
P̂S4

= PS4
[1, 4] = {PizzaHut, CA, KFC, Pizza}.

Similarly for S1, PS1
= {BurgerKing, MountainView,

SanFrancisco, Fastfood}. As τS1
= d0.6 · 2e = 2. We

can prune 1 signature from PS1 and P̂S1
= PS1

[1, 3] =
{BurgerKing, MountainView, SanFrancisco}. As
P̂S1
∩ P̂S4

= φ, we can prune this pair. Using the path
prefix, there are only 15 candidate pairs, which is better
than the node prefix (22 candidate pairs).
Filtering Strategy. Based on the path prefix, we propose a
filtering strategy. We first sort the path signatures for all the
elements and fix a global order of path signatures. Then for
each object S, we generate its path signature P̂S . Next we
can utilize the filtering method in the framework to generate
the candidates using path signatures. The only difference is
to use path prefix to replace the node prefix.

4.2.2 Weighted Path Prefix
We can further improve the path prefix by considering
the maximum similarity of two elements given a matching
signature. For example, given an element e, for its path
signature ed, the maximum possible similarity between e to
any other element e′ is d

de
≤ d

max(de,de′)
given matching the

signature ed. Thus in the path signature, we associate each
signature with a maximum similarity. When we remove a
signature, we check its weight d

de
and compute the sum of

the weight of removed signatures. Note if two signatures are
from the same element, we only keep the larger weight (as
any another element cannot have larger similarity to e than
this weight). As the weight is smaller than 1, this weighted
strategy can prune more signatures than the path signatures.
Next, we formally introduce this idea.

Algorithm 2: PATHPREFIXFILTER(S , δ, τ)
Input: S : The set of objects S

δ: The element similarity threshold
τ : The object similarity threshold

Output: A: The set of similar object pairs in S
Get a global order of path signatures;1

for each object Sx in S do2

PSx = path signature set of Sx;3

P̂Sx = (weighted) path prefix of PSx ;4

for each signature ge ∈ P̂Sx do5

for each object Sy ∈ L(ge) do6

if VERIFY(Sx, Sy)=true then A ← (Sx, Sy);7

L(ge)← Sx;8

Fig. 5. The Path-Prefix Based Filtering

Definition 9 (Weighted Path Prefix). Given an object S, the
path prefix of S is P̂S = PS [1, i|], such that

MSIM(PS [i, |PS |]) ≥ τ |S| and MSIM(PS [i+ 1, |PS |]) < τ |S|
where MSIM(PS [i, |PS |]) is the sum of maximum similarity
of signatures in set PS [i, |PS |].

If the weighted path prefixes of two objects have no
overlap, the two objects cannot be similar (Lemma 7).
Lemma 7. Given two objects Sx and Sy , if their weighted path
prefixes do not overlap, they cannot be similar.
Proof. As P̂Sx ∩ P̂Sy = φ, without loss of generality, assume
the last signature in P̂Sx is smaller than the last signature
of P̂Sy . Then all the signatures in P̂Sx are smaller than
the signatures in PSy − P̂Sy . Thus we have P̂Sx ∩ PSy =

φ. As MSIM(PSx − P̂Sx) < τ |Sx|, MSIM(PSx ∩ PSy) =

MSIM(P̂Sx ∩ PSy) + MSIM((PSx − P̂Sx) ∩ PSy) < τ |Sx|.
As MSIM(PSx ∩ PSy) < τ |Sx|, the fuzzy overlap of
Sx and Sy is less than τ |Sx|. Thus the similarity be-
tween Sx and Sy must be smaller than τ . Similarly, if
the last signature in P̂Sx is larger than the last signa-
ture of P̂Sy .Then all the signatures in P̂Sy are smaller
than the signatures in PSx − P̂Sx . Thus P̂Sy ∩ PSx =

φ. As MSIM(PSy − P̂Sy) < τ |Sy|, MSIM(PSy ∩ PSx) =

MSIM(P̂Sy ∩ PSx) + MSIM((PSy − P̂Sy) ∩ PSx) < τ |Sy|. As
MSIM(PSy ∩ PSx) < τ |Sy|, the fuzzy overlap of Sx and Sy
is less than τ |Sy|. Thus Sx and Sy cannot be similar.

For example, consider S4. Assume δ = 0.7 and τ = 0.6.
PS4 = {PizzaHut, CA, KFC, Pizza, Fastfood}.
The path prefix of S4 is {PizzaHut, CA, KFC, Pizza}.
However, if we consider the similarity of each signature,
PS4 = {PizzaHut: 44 , CA: 33 , KFC: 44 , Pizza: 34 , Fastfood: 34}.
We can prune the last three signatures, because KFC and
Fastfood are from the same element and the weight sum
of KFC and Pizza is smaller than τ |S4| = 1.8. Thus the
weighted path prefix of S4 is {PizzaHut, CA}. Similarly,
the path prefix of S2 is {Brooklyn, PaloAlto, Pizza,
SanFrancisco}, and the weighted path prefix of S2 is
{Brooklyn, PaloAlto, Pizza}. As the path prefixes of
S2 and S4 share a common signature Pizza, we cannot
prune this pair. If we use the weighted path prefix, they
have no common signature, thus we can prune this pair.

4.2.3 Path Prefix Based Filtering Algorithm
Using (weighted) path prefix, we can devise a filtering
algorithm. The pseudo code of the algorithm is shown in

8

Figure 5. The algorithm first gets a global order of the
path signatures (line 1), and then computes the prefix by
removing signatures in a reverse way (lines 3-4). Then for
each signature, it identifies the candidate from the inverted
list of this signature (line 7). Finally it needs to append the
object onto the inverted list (line 8).

5 ADAPTIVE VERIFICATION
We propose an adaptive verification algorithm to improve
the performance of the verification step. We first propose
a subgraph matching framework (Section 5.1), and then
develop an adaptive verification algorithm (Section 5.2).

5.1 Subgraph Matching
As it is expensive to compute the maximum graph matching
in order to compute the knowledge-aware similarity of a
candidate pair, we propose a divide-and-conquer algorithm.
Given a candidate 〈Sx, Sy〉, we first partition the two objects
into some small sets, and then compute the similarities
between small sets, and finally utilize these similarities to
compute the similarity of the two objects. Since the subsets
have smaller numbers of elements, the complexity of com-
puting the similarity is much lower. Thus this method can
significantly improve the verification performance.

Formally, we first group all elements by their node
signatures. The elements with the same node signature will
fall in the same group. For each group, Six and Siy , we
first compute the fuzzy overlap Six∩̃δSiy on the two small
sets and then we can prove that Sx∩̃δSy =

∑m
i=1 S

i
x∩̃δSiy

as stated in Lemma 8. The basic idea is that the elements
from different groups (i.e., with different node signatures)
cannot be similar based on Lemma 1. Then we can easily
compute the knowledge-aware similarity SIMδ(Sx, Sy) =

|Sx∩̃δSy|
|Sx|+|Sy|−|Sx∩̃δSy|

based on Sx∩̃δSy .

Lemma 8. Given two objects Sx and Sy , suppose they have m
different node signatures. Six (Siy) is the subset of Sx (Sy) with
the same node signature, we have

Sx∩̃δSy =
m∑
i=1

Six∩̃δSiy. (5)

Proof. Based on Lemma 1, in the bigraph G = ((Sx, Sy), E),
all the elements in Six are only connected with elements
in Siy and all the elements in Siy are also only con-
nected with elements in Six. In other words, the subgraphs
Gi = ((Six, S

i
y), E

i) and Gj = ((Sjx, S
j
y), E

j) have no
edge. Thus the union of Gi = ((Six, S

i
y), E

i) is exactly
G = ((Sx, Sy), E). Hence, Sx∩̃δSy =

∑
i S

i
x∩̃δSiy.

5.2 Adaptive Verification
It is still expensive to compute the maximum matching
of the subgraphs w.r.t. the subsets. To alleviate this prob-
lem, we propose an adaptive algorithm. Instead of directly
computing the maximum matching, we estimate an upper
bound and a lower bound of the subgraph matching. If
the upper bound is smaller than a threshold, the candidate
is not an answer and we can prune the candidate. If the
lower bound is larger than a threshold, the candidate must
be an answer without needing to compute the real maxi-
mum matching. Since there may be many subgraphs, we
also discuss how to determine the order of computing the

maximum matching of the subgraphs. Based on the order,
we first compute the maximum matching of subgraphs
that can facilitate the early termination and thus can avoid
computing the maximum matching of other subgraphs.

Figure 6 illustrates the pseudo code. It first splits Sx and
Sy into subgroups based on the node signatures (line 1).
For each group, it estimates the lower bound Bli of fuzzy
overlap of elements in the group (line 2) and the upper
bound Bui (line 3). Then it computes the overall lower bound
Bl =

∑
Bli and upper bound Bu =

∑
Bui . If Bl

|Sx|+|Sy|−Bl ≥
τ , i.e., Bl ≥ τSx,Sy = d τ

1+τ (|Sx| + |Sy|)e, the candidate
is an answer and the algorithm returns true (line 4). If

Bu
|Sx|+|Sy|−Bu < τ , i.e., Bu < τSx,Sy = d τ

1+τ (|Sx|+ |Sy|)e, the
candidate is not an answer and the algorithm returns false
(line 5). Then it sorts the groups based on the two bounds
(line 6) and adaptively verifies the subgraphs (lines 8-12).
The details on how to estimate the upper and lower bounds
are respectively discussed in Section 5.2.1 and Section 5.2.2.

For example, consider S8={Pizza, KFC, Dominos,
SanFrancisco, Manhattan, Brooklyn} and
S9={Fastfood, PizzaHut, BurgerKing, PaloAlto,
MountainView, NewYork} in Table 1. Assume
δ = 0.6 and τ = 0.6. They can be partitioned
into two groups S1

8 = {Pizza, KFC, Dominos},
S1
9 = {Fastfood, PizzaHut, BurgerKing} and
S2
8 = {SanFrancisco, Manhattan, Brooklyn},
S2
9 = {PaloAlto, MountainView, NewYork}. We

can compute the lower bounds of the two groups Bl1
= 13

6 and Bl2 = 8
5 , thus the lower bound Bl = 113

30 . As
113
30

6+6− 113
30

= 113
247 < 0.6, we compute the upper bounds of the

two groups Bu1 = 9
4 and Bu2 = 12

5 , thus the upper bound Bu

= 93
20 . As

93
20

6+6− 93
20

= 93
147 > 0.6, we still need to compute the

real similarity. If we compute the second group first (we
will discuss how to determine the order in Section 5.2.3), Bu
= 93

20−
12
5 + 8

5 = 77
20 . As

77
20

6+6− 77
20

= 77
163 < 0.6, we return false.

5.2.1 Upper Bound Estimation
We dig into the details on how to compute the maximum
weight matching. In the maximum matching, on the one
hand, either all the elements in Sx or all the elements in
Sy are covered by the edges in the maximum matching.
On the other hand, without loss of generality, suppose all
the elements in Sx are covered by the edges. For each
edge on element e, its weight should not be larger than the
maximum weight of edges at e, thus we have the weight of
the maximum matching is at most

∑
ex∈Sx maxwex . Thus,

we can estimate an upper bound Bu as follows.
For a candidate pair 〈Sx, Sy〉, we sum up the maximum

weight of edges of each element in Sx(or Sy), i.e.,

Bu = min(
∑
ex∈Sx

maxwex ,
∑
ey∈Sy

maxwey). (6)

where wex is the maximum similarity of edges for ex. It is
easy to prove that Bu is an upper bound of |Sx∩̃δSy|.

Recall the above example. Consider the second group
of two objects S8 and S9: {SanFrancisco, Manhattan,
Brooklyn}, {PaloAlto, MountainView, NewYork}.∑
ex∈S10

maxwex = 4
5 +

4
5 +

4
5 = 12

5 and
∑
ex∈S11

maxwex =
4
5 + 4

5 + 4
5 = 12

5 , thus the upper bound is Bu2 = 12
5 .

9

Algorithm 3: ADAPTIVEVERIFY(T , S1, S2, δ, τ)
Input: T : The knowledge hierarchy;

Sx, Sy : Two objects;
δ: The element similarity threshold;
τ : The object similarity threshold

Output: True or False
Split Sx and Sy into m subsets by node signatures ;1

Bli = ESTIMATELOWERBOUND(Six, S
i
y) ;2

Bui = ESTIMATEUPPERBOUND(Six, S
i
y) ;3

if Bl =
∑
Bli ≥ τSx,Sy then return True ;4

if Bu =
∑
Bui < τSx,Sy then return False ;5

Sort i by Bui − Bli ;6

for i = 1 to m do7

s = REALSIM(Six, S
i
y) ;8

Bu = Bu − Bui + s ;9

if Bu < τSx,Sy then return False ;10

Bl = Bl − Bli + s ;11

if Bl ≥ τSx,Sy then return True ;12

Fig. 6. Adaptive Verification Algorithm

5.2.2 Lower Bound Estimation
We first propose two greedy strategies to calculate the lower
bounds and then combine them to give a tighter bound.
Greedy Algorithm: Maximum Weight. We devise a greedy
algorithm to select the edge with the maximum weight. To
avoid involving an element multiple times, after selecting
an edge, we remove the two elements on the edge. Formally,
given a bigraph G = ((Sx, Sy), E), we find the edge with
the maximum weight, and remove this edge and the two
elements of the edge from the bigraph. We repeat this
process until there is no edge. Then we sum up the weight of
all removed edges, which is a lower bound of |Sx∩̃δSy|. As
each edge will be processed once, we use a min-heap to keep
the edge, and the complexity is O(|Sx|+ |Sy|+ |E| log |E|).
We denote this lower bound as lw.
Greedy Algorithm: Maximum Degree. We devise a greedy
algorithm to cover as many elements as possible. Formally,
given a bigraph G = ((Sx, Sy), E), we find the element ex
with the smallest degree in Sx. Then we find the element
ey with the smallest degree connected to ex in Sy . We select
(ex, ey) and delete ex, ey from the bigraph. We repeat this
process until there is no element in Sx. Then we sum up the
weights of the selected edges and this is a lower bound. The
time complexity is O((|Sx|+|Sy|) log(|Sx|+|Sy|)+|E|). We
denote this lower bound as le.

We can combine these two lower bounds and get a
tighter lower bound Bl = max(lw, le).

5.2.3 Determining The Order of Subgraphs
A good order of computing the maximum matching of
the subgraphs can early terminate the loop in Lines 9 -
14 in Algorithm 3. Obviously, we want to first check the
subgraphs whose estimated upper and lower bounds are
rather loose. To this end, we can sort the subgraphs based
on Bu − Bl. Obviously, the larger Bu − Bl is, the estimated
two bounds are looser. Thus we first compute the maximum
matching of the subgraphs with the largest Bu − Bl.

6 EXTENSIONS
6.1 From Self Join to R-S Join
Given two collections of objects R and S , we first generate
the signatures of all the objects and fix a global order. Then

we utilize the inverted lists to index objects in one collection,
e.g., R. (We will index the set with larger size because we
can search the smaller dataset by utilizing the indexes on the
larger dataset.) Next for each object in the other collection,
e.g., S , we generate its signature and the objects on the
inverted list of each signature is a candidate of this object.
Finally we verify the candidates to generate the final answer.

6.2 Supporting Other Element Similarity Metrics
Our method can support many other functions to define
element similarity (Equation 1) if they depends on dex ,
dey , dex,ey . For example, our method can support a famous
metrics Wu & Palmer [35] in the AI community, which
calculates similarity by considering the depths of the two
elements as follows.

SIM(ex, ey) =
2 ∗ dex,ey
dex + dey

. (7)

Suppose ex and ey are two different elements. If they are
similar, we have δ ≤ 2∗dex,ey

dex+dey
≤ 2∗dex,ey

2∗dex,ey+1 , thus dex,ey ≥
δ

2(1−δ) . Thus our techniques can support this function.

6.3 Supporting Other Set Similarity Metrics
We can utilize any similarity functions to replace Jaccard
to define the knowledge-aware similarity (Equation 3). Our
algorithm relies only on τS and τSx,Sy , thus we discuss how
to compute the two values.
Dice Similarity: SIMδ(Sx, Sy) =

2·|Sx∩̃δSy|
|Sx|+|Sy| ≥ τ.

τSx,Sy = d τ2 · (|Sx|+ |Sy|)e.
τSx = d τ

2−τ · |Sx|e as 2·|Sx∩̃δSy|
|Sx|+|Sy| ≥ τ→|Sx∩̃δSy| ≥

τ
2−τ · |Sx|.

Cosine Similarity: SIMδ(Sx, Sy) =
|Sx∩̃δSy|√
|Sx|·|Sy|

≥ τ.

τSx,Sy = dτ ·
√
|Sx| · |Sy|e.

τSx = dτ2 · |Sx|e as |Sx∩̃δSy|√
|Sx|·|Sy|

≥ τ → |Sx∩̃δSy| ≥ τ2 · |Sx|.

6.4 Supporting One Element Matching Multiple Nodes
We first discuss how to extend node signatures to sup-
port the case of one element matching multiple nodes.
For each element e, we first find its mapping nodes and
generate node signatures for each node. Then we generate
the signature set of object S by computing the union of its
element’s node signatures. We fix a global order of all node
signatures. Next we sort the signature set of e and generate
the node prefix of S by removing the node signatures in a
reverse way, until there are τS − 1 elements that have node
signatures removed. Thus the node signature based filtering
technique can be used. For verification, we still partition the
signature sets based on the node signature. Note that if two
subsets have common elements, we need to merge them.
Then our verification techniques can use used.

Similarly, our (weighted) path prefix, subgraph match-
ing, and adaptive verification algorithms can be used to
support the case of one element matching multiple nodes.

6.5 Supporting DAG
If the knowledge hierarchy is a DAG, we can transform the
DAG to a tree. For each node in the DAG with multiple
parents, e.g., v parents, we duplicate the node v times and
take each of them as a child of these v parents. In this way,
we can transform the DAG to a tree. Then an element may
map to multiple nodes in the tree and thus we can use the
techniques in the above section to support DAG.

10

 0

 20

 40

 60

 80

 100

 0.5 0.6 0.7 0.8 0.9

R
e
c
a
ll(

%
)

Object Threshold τ

Fast-Join
Synonym

K-Join
K-Join+

(a) Recall (Pub)

 0

 20

 40

 60

 80

 100

 0.5 0.6 0.7 0.8 0.9

R
e
c
a
ll(

%
)

Object Threshold τ

Fast-Join
Synonym

K-Join
K-Join+

(b) Recall (Res)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 0.6 0.7 0.8 0.9

F
-m

e
a
s
u
re

Object Threshold τ

Fast-Join
Synonym

K-Join
K-Join+

(c) F-measure (Pub)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 0.6 0.7 0.8 0.9

F
-m

e
a
s
u
re

Object Threshold τ

Fast-Join
Synonym

K-Join
K-Join+

(d) F-measure (Res)
Fig. 7. Effectiveness: Comparison with State-of-the-arts by Varying τ(δ = 0.5).

 0

 20

 40

 60

 80

 100

 0.5 0.6 0.7 0.8 0.9

R
e
c
a
ll(

%
)

Element Threshold δ

Fast-Join
Synonym

K-Join
K-Join+

(a) Recall (Pub)

 0

 20

 40

 60

 80

 100

 0.5 0.6 0.7 0.8 0.9

R
e
c
a
ll(

%
)

Element Threshold δ

Fast-Join
Synonym

K-Join
K-Join+

(b) Recall (Res)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 0.6 0.7 0.8 0.9

F
-m

e
a
s
u
re

Element Threshold δ

Fast-Join
Synonym

K-Join
K-Join+

(c) F-measure (Pub)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 0.6 0.7 0.8 0.9

F
-m

e
a
s
u
re

Element Threshold δ

Fast-Join
Synonym

K-Join
K-Join+

(d) F-measure (Res)
Fig. 8. Effectiveness: Comparison with State-of-the-arts by Varying δ(τ = 0.7).

TABLE 2
Knowledge Hierarchy.

Nodes Height Avg Fanout Max Fanout Min Fanout
4222 6 7 49 1

TABLE 3
Datasets.

Datasets Size AvgLen MaxLen MinLen AvgDep
Paper 1879 6 16 4 3
Restaurant 864 4 4 4 5
POI(small) 100,000 11 21 2 4
POI(large) 1,000,000 11 21 2 4
Tweet (small) 100,000 8 23 2 5
Tweet (large) 1,000,000 7 27 2 5

7 EXPERIMENTAL STUDY
7.1 Experimental Setup
Knowledge Hierarchy. We used a real-world knowledge hi-
erarchy with POI (points of interest) and location categories,
e.g., food and addresses, which were crawled from Factual
(www.factual.com) as shown in Table 2.
Datasets. We used four real-world datasets: Pub, Res, POI
and Tweet. The Pub dataset contained 1879 papers and
each paper was composed of author, title, journal, date,
publisher, and institution. The Res contained 864 restau-
rants and each restaurant was described by name, address,
city and food. These two datasets had ground truths [30].
The inconsistencies in the Pub dataset were due to typos or
abbreviations; and the errors in the Res dataset were due to
synonyms and knowledge hierarchy (e.g., “American food”
and “Californian food”). We used them to evaluate the
effectiveness. The POI dataset contained 1 million POIs and
each POI included address, category and name. The Tweet
dataset contained 1 millions crawled tweets which included
address and category. As the Pub and Res datasets were too
small, we utilized POI and Tweet to compare the efficiency.
As the baseline could not support large datasets, we selected
100,000 records from the two datasets and generated two
small datasets. The details were shown in Table 3.
Baseline. FastJoin was a state-of-the-art method [28],
which extended the set similarity functions to tolerate the
edit errors between elements. Synonym was another state-
of-the-art method [19], which used synonyms to measure
string similarities where an element mapped to any of its
synonyms. Crowd was a crowdsourcing based method [25],
which utilized human knowledge to improve the quality.

All the algorithms were implemented in C++. The exper-
iments were conducted on a Ubuntu server with two Intel

TABLE 4
Quality on Pub and Res (δ = 0.5, τ = 0.6)

Pub Res
Precision Recall F-measure Precision Recall F-measure

FastJoin 87.6 52.4 65.1 81.5 47.3 60.0
K-Join 89.1 33.8 49.2 85.8 73.2 79.2
K-Join+ 88.4 71.2 80.1 85.3 83.0 84.0
Synonym 89.1 15.9 27.2 89.5 61.6 76.1
Crowd 68.8 95.0 80.1 81.4 88.8 84.9

Xeon X5670 CPUs (2.93GHz) and 64GB RAM.

7.2 Evaluation on Effectiveness
We evaluated the result quality on the Pub and Res datasets.
We compared FastJoin, Synonym, K-Join (an element
maps one tree node) and K-Join+ (an element maps
multiple tree nodes using synonyms and approximating
matching), and Crowd. For Pub, we constructed a 3-level
hierarchy, e.g., paper, research area, conference. For Res, we
used the hierarchy in Table 2. Table 4 shows the results.

From the results, we had the following observations.
Firstly, our method had much higher recall than FastJoin
and Synonym, because we could use the knowledge to
enrich the data and thus found more similar pairs. For
example, given two restaurants with “Californian” food and
“American” food that referred to the same restaurant, our
method could use the knowledge hierarchy to handle them
easily while FastJoin and Synonym cannot. As another
example, two journals with names “Artif Intelligence” and
“Artificial Intelli”, could map to the same category “Ar-
tificial Intelligence”. FastJoin performed worse on the
Res dataset with more synonyms and hierarchy, because
although it tried to find more similar pairs by tolerating
the edit errors, it cannot tolerate the inconsistencies that
an entity had different representations. Synonym performed
worse on the Pub dataset with more typos, because while it
utilized synonyms to improve the effectiveness, it used a
token-based measure which ignored the similarity between
tokens with typos. Thus, both of the two competitors cannot
use the knowledge hierarchy to improve the result quality,
while in contrast our method utilized the knowledge to
address this entity-resolution issue. K-Join+ had higher
recall than K-Join, as it could match each element to
multiple nodes by tolerating typos and synonyms. Due to
the flexible matching, K-Join+ combined the strengths
of FastJoin, Synonym and K-Join in the same frame-
work magically. Secondly, our method had much higher
F-measure than FastJoin and Synonym, because these

11

 100000

 1x10
6

 1x10
7

 1x10
8

 1x10
9

 1x10
10

 1x10
11

 0.75 0.8 0.85 0.9 0.95

#
 o

f
C

a
n
d
id

a
te

s

Object Threshold τ

Node
Shallow

Deep

(a) Candidate (POI)

 100000

 1x10
6

 1x10
7

 1x10
8

 1x10
9

 1x10
10

 1x10
11

 0.75 0.8 0.85 0.9 0.95

#
 o

f
C

a
n
d
id

a
te

s

Object Threshold τ

Node
Shallow

Deep

(b) Candidate (Tweet)

 0

 100

 200

 300

 0.75 0.8 0.85 0.9 0.95

T
im

e
 (

s
)

Object Threshold τ

Node
Shallow

Deep

(c) Time (POI)

 0

 50

 100

 150

 200

 0.75 0.8 0.85 0.9 0.95

T
im

e
 (

s
)

Object Threshold τ

Node
Shallow

Deep

(d) Time (Tweet)
Fig. 9. Efficiency: Evaluation on Filtering by Varying τ(δ = 0.8).

 100000

 1x10
6

 1x10
7

 1x10
8

 1x10
9

 1x10
10

 1x10
11

 0.5 0.6 0.7 0.8 0.9

#
 o

f
C

a
n
d
id

a
te

s

Element Threshold δ

Node
Shallow

Deep

(a) Candidate (POI, τ = 0.95)

 1x10
6

 1x10
7

 1x10
8

 1x10
9

 1x10
10

 1x10
11

 0.5 0.6 0.7 0.8 0.9

#
 o

f
C

a
n
d
id

a
te

s

Element Threshold δ

Node
Shallow

Deep

(b) Candidate (Tweet, τ = 0.85)

 0

 100

 200

 300

 400

 500

 0.5 0.6 0.7 0.8 0.9

T
im

e
 (

s
)

Element Threshold δ

Node
Shallow

Deep

(c) Time (POI, τ = 0.95)

 0

 50

 100

 150

 200

 250

 300

 350

 0.5 0.6 0.7 0.8 0.9

T
im

e
 (

s
)

Element Threshold δ

Node
Shallow

Deep

(d) Time (Tweet, τ = 0.85)
Fig. 10. Efficiency: Evaluation on Filtering by Varying δ.

 0

 50

 100

 150

 0.75 0.8 0.85 0.9 0.95

T
im

e
 (

s
)

Object Threshold τ

Basic
SubGraph

Adaptive

(a) Time (POI, δ = 0.8)

 0

 50

 100

 0.75 0.8 0.85 0.9 0.95

T
im

e
 (

s
)

Object Threshold τ

Basic
SubGraph

Adaptive

(b) Time (Tweet, δ = 0.8)

 0

 10

 20

 0.5 0.6 0.7 0.8 0.9

T
im

e
 (

s
)

Element Threshold δ

Basic
SubGraph

Adaptive

(c) Time (POI, τ = 0.95)

 0

 20

 40

 60

 80

 0.5 0.6 0.7 0.8 0.9

T
im

e
 (

s
)

Element Threshold δ

Basic
SubGraph

Adaptive

(d) Time (Tweet, τ = 0.85)
Fig. 11. Efficiency: Evaluation on Verification by Varying τ and δ.
methods had similar precision rate. Thirdly, our method had
nearly the same quality with Crowd, because we can utilize
knowledge (similar to human ability) to improve the quality.

Next we varied the thresholds τ and δ and compared
different methods. As Crowd did not utilize any threshold,
we only showed other four methods. As the precision of
these methods was similar, we only showed recall and F-
measure, as illustrated in Figures 7 and 8. We had the
following observations. Firstly, with the increase of τ , the
recall decreased as only a few pairs were returned for a large
threshold; the precision slightly increased as the returned
pairs had large similarities and thus large possibilities to be
true similar pairs; and F-measure also decreased, because
the recall significantly reduced while the precision slightly
increased. The large increase for F-measure of FastJoin
from τ = 0.5 to τ = 0.6 was due to that the precision rate
increased from 17% to 81.5%. Secondly, with the increase of
δ, the recall slightly reduced, as fewer similar entities were
found and thus fewer results were reported. The precision
would increase as we used more similar entities with the
increase of δ, and thus we had similar F-measure.

7.3 Evaluation on Efficiency
7.3.1 Evaluation on Filtering
We first evaluated the filtering step and compared three
methods: (1) Node, using the node signature to generate
candidates; (2) Shallow, using the shallow signatures to
generate candidates; (3) Deep, using the deep signatures to
generate candidates. Figures 9 and 10 showed the results.

We made the following observations. Firstly, both
Shallow and Deep had smaller numbers of candidates
than Node. For example, when τ = 0.85 and δ = 0.8
on the POI dataset, the numbers of candidates of Node,

Shallow, and Deep were respectively 1.2 billions, 9 mil-
lions, 5 millions. This was because Node did not utilize the
depth of elements and generated coarse-grained signatures
while Shallow and Deep utilized the depth information to
generate fine-grained signatures which effectively pruned
many dissimilar pairs. Secondly, the number of candidates
of Deep was smaller than that of Shallow, especially on
the Tweet dataset. For example, for τ = 0.85 and δ = 0.8
on the Tweet dataset, the number of candidates of Deep
was 40 millions and that of Shallow was only 7 millions.
This was because Deep used deeper nodes as the signa-
tures, which generated fine-grained signatures, and thus
it could prune many dissimilar pairs and achieved better
performance than Shallow. In addition, the average depth
of the elements on the Tweet dataset was larger than that of
POI, and thus the performance gap of Deep and Shallow
was more remarkable on Tweet. Thirdly, the three methods
had similar trends in terms of efficiency, i.e., Deep was better
than Shallow, which in turn was better than Node, because
if there were more candidates, the verification step took
more time to verify them. Fourthly, the number of candi-
dates tended to decrease as the object similarity threshold
τ increased, because for a larger threshold, there would be
smaller numbers of candidates (and answers). Fifthly, the
number of candidates decreased as the element similarity
threshold δ increased, as for a larger threshold, there would
be more similar elements and thus more candidates. The
number of signatures for elements relied on δ and that for
objects relied on τ . The two thresholds affected the candi-
date number. Sixthly, when the element similarity threshold
δ was small, the performance of Shallow was comparable
to that of Node, but Deep was much better than Node and
Shallow. This was because for a small δ, both Shallow

12

 100000

 1x10
6

 1x10
7

 1x10
8

 1x10
9

 1x10
10

 1x10
11

 0.75 0.8 0.85 0.9 0.95

#
 o

f
C

a
n
d
id

a
te

s

Object Threshold τ

FastJoin
Synonym

K-Join
K-Join+

(a) Candidate (POI)

 100000

 1x10
6

 1x10
7

 1x10
8

 1x10
9

 1x10
10

 1x10
11

 0.75 0.8 0.85 0.9 0.95

#
 o

f
C

a
n
d
id

a
te

s

Object Threshold τ

FastJoin
Synonym

K-Join
K-Join+

(b) Candidate (Tweet)

 1

 10

 100

 1000

 10000

 100000

 1x10
6

 0.75 0.8 0.85 0.9 0.95

T
im

e
 (

s
)

Object Threshold τ

FastJoin
Synonym

K-Join
K-Join+

(c) Time (POI)

 1

 10

 100

 1000

 10000

 100000

 1x10
6

 0.75 0.8 0.85 0.9 0.95

T
im

e
 (

s
)

Object Threshold τ

FastJoin
Synonym

K-Join
K-Join+

(d) Time (Tweet)
Fig. 12. Efficiency: Comparison with State-of-the-art Method by Varying τ(δ = 0.8).

 100000

 1x10
6

 1x10
7

 1x10
8

 1x10
9

 1x10
10

 1x10
11

 1x10
12

 0.5 0.6 0.7 0.8 0.9

#
 o

f
C

a
n
d
id

a
te

s

Element Threshold δ

FastJoin
Synonym

K-Join
K-Join+

(a) Candidate (POI, τ = 0.95)

 1x10
6

 1x10
7

 1x10
8

 1x10
9

 1x10
10

 1x10
11

 1x10
12

 0.5 0.6 0.7 0.8 0.9

#
 o

f
C

a
n
d
id

a
te

s

Element Threshold δ

FastJoin
Synonym

K-Join
K-Join+

(b) Candidate (Tweet, τ = 0.85)

 1

 10

 100

 1000

 10000

 100000

 1x10
6

 0.5 0.6 0.7 0.8 0.9

T
im

e
 (

s
)

Element Threshold δ

FastJoin
Synonym

K-Join
K-Join+

(c) Time (POI, τ = 0.95)

 1

 10

 100

 1000

 10000

 100000

 1x10
6

 0.5 0.6 0.7 0.8 0.9

T
im

e
 (

s
)

Element Threshold δ

FastJoin
Synonym

K-Join
K-Join+

(d) Time (Tweet, τ = 0.85)
Fig. 13. Efficiency: Comparison with State-of-the-art Method by Varying δ.

 0

 500

 1000

 1500

 2 4 6 8 10

T
im

e
 (

s
)

of objects(x 100,000)

K-Join
K-Join+

(a) Time (POI, τ = 0.95)

 0

 500

 1000

 1500

 2 4 6 8 10

T
im

e
 (

s
)

of objects(x 100,000)

K-Join
K-Join+

(b) Time (Tweet, τ = 0.85)
Fig. 14. Scalability (δ = 0.8).
and Node generated shallow-level signatures while Deep
generated deep-level signatures. Obviously the deep-level
signatures had higher pruning power than the shallow-level
signatures. With the increase of δ, the gap between Deep and
Shallow became smaller, because for a large δ, both of them
could generate deep-level signatures. The performance gap
between Deep and Node became larger, as Node cannot
generate high-quality signatures.
7.3.2 Evaluation on Verification
We evaluated the verification step. We compared three
algorithms: (1) Basic, the basic verification algorithm;
(2) SubGraph, the subgraph matching; (3) Adaptive, the
adaptive verification algorithm. Figure 11 showed the result.

Firstly, Adaptive was better than SubGraph, which in
turn outperformed Basic. For example, for τ = 0.8 and
δ = 0.8 on the POI dataset, Basic took 70 seconds, and
SubGraph took 61 seconds and Adaptive improved to 29
seconds. This was because SubGraph reduced the verifica-
tion complexity compared with Basic, and Adaptive used
the upper and lower bounds to achieve early termination
and avoided many unnecessary computations. Secondly,
the performance gap between them became smaller with
the increase of threshold τ . For small thresholds τ , as for
small thresholds there were larger numbers of candidates,
Adaptive and SubGraph had large opportunity to do
pruning; while for large thresholds, there were smaller
numbers of candidates and there was not enough room to
improve verification. Thirdly, with the increase of threshold
δ, the three methods achieved better performance, as there
were smaller numbers of candidates (as well as answers).
7.3.3 Comparison with the State-of-the-art Method
We compared our method with the state-of-the-art works
FastJoin and Synonym. As both FastJoin and Synonym

could not support large datasets, we compared the perfor-
mance on the POI (small) and Tweet (small) datasets. Fig-
ures 12 and 13 showed the results. We made the following
observations. Firstly, K-Join and K-Join+ significantly
outperformed FastJoin and Synonym in terms of both
candidate numbers and efficiency, even by 2-3 orders of
magnitude. For example, for τ = 0.95 and δ = 0.8 on the
Tweet dataset, the numbers of candidates of FastJoin,
Synonym, K-Join, K-Join+ were respectively 492 mil-
lions, 16 millions, 0.7 millions, 0.9 millions. FastJoin took
711 seconds and Synonym took 30 seconds while our meth-
ods only took 2 seconds. The main reasons were: (1) we used
efficient node/path prefix filtering to find candidates, which
was much better than FastJoin and Synonym (which
generated too many signatures), and thus our method gen-
erated smaller numbers of candidates than FastJoin and
Synonym; (2) we improved the verification step carefully us-
ing subgraph matching and adaptive filtering (which were
rather efficient to improve the efficiency as demonstrated in
the above experiments), while FastJoin and Synonym did
not optimize the verification. Secondly, K-Join had slightly
better performance than K-Join+, as K-Join+ generated
more candidates than K-Join by tolerating more errors.
Thirdly, as δ increased, the performance gap between our
method and the two competitors tended to decrease, be-
cause for a large threshold, there would be smaller numbers
of candidates and there was no enough room to improve the
efficiency; but for a small threshold, there were large num-
bers of candidates. Synonym kept the same performance for
different δ, as it did not use the element similarity threshold
and it used exact token matching to support synonyms.

7.3.4 Evaluation on Scalability

We used the two large datasets, POI (large) and Tweet
(large), to evaluate the scalability of our methods. Figure 14
showed the overall time by varying the number of objects.
From the results, we can see that our method scaled well and
achieved nearly linear scalability. This was attributed to our
efficient filtering methods to prune as many dissimilar pairs
as possible and adaptive subgraph matching algorithm to
avoid verification cost as much as possible. K-Join+ took
a little more time than K-Join as it found more results.

13

8 CONCLUSION
We study a new problem, knowledge-aware similarity
join. We propose a new similarity metric to quantify the
knowledge-aware similarity on elements and objects. We
propose a filter-and-verification framework to efficiently
identify similar pairs. In the filter step, we devise node/path
signatures to prune large numbers of dissimilar pairs. In
the verification step, we propose subgraph matching and
develop an adaptive verification algorithm. Experimental
results show that our method significantly outperforms
baseline algorithms in both efficiency and effectiveness.
Acknowledgement. This work was partly supported
by the 973 Program of China (2015CB358700), NSF of
China (61373024, 61422205, 61472198), Huawei, Shenzhou,
Tencent, FDCT/116/2013/A3, MYRG105(Y1-L3)-FST13-GZ,
863 Program(2012AA012600), and Chinese Special Project of
Science & Technology(2013zx01039-002-002).

REFERENCES

[1] H. Andrade and J. H. Saltz. Towards a knowledge base manage-
ment system (kbms): An ontology-aware database management
system (dbms). In SBBD, pages 27–39, 1999.

[2] A. Arasu, S. Chaudhuri, and R. Kaushik. Transformation-based
framework for record matching. In ICDE, pages 40–49, 2008.

[3] R. J. Bayardo, Y. Ma, and R. Srikant. Scaling up all pairs similarity
search. In WWW, pages 131–140, 2007.

[4] P. Ceravolo, E. Damiani, and M. Leida. Semantic-aware, ontology
mediated mapping generation system. 2015.

[5] S. Chaudhuri, V. Ganti, and R. Kaushik. A primitive operator for
similarity joins in data cleaning. In ICDE, page 5, 2006.

[6] D. Deng, G. Li, and J. Feng. A pivotal prefix based filtering
algorithm for string similarity search. In SIGMOD Conference,
pages 673–684, 2014.

[7] D. Deng, G. Li, J. Feng, and W.-S. Li. Top-k string similarity search
with edit-distance constraints. In ICDE, pages 925–936, 2013.

[8] D. Deng, G. Li, S. Hao, J. Wang, and J. Feng. Massjoin: A
mapreduce-based method for scalable string similarity joins. In
ICDE, pages 340–351, 2014.

[9] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios. Duplicate
record detection: A survey. IEEE Trans. Knowl. Data Eng., 19(1):1–
16, 2007.

[10] J. Feng, J. Wang, and G. Li. Trie-join: a trie-based method for
efficient string similarity joins. VLDB J., 21(4):437–461, 2012.

[11] M. Hadjieleftheriou, X. Yu, N. Koudas, and D. Srivastava. Hashed
samples: selectivity estimators for set similarity selection queries.
PVLDB, 1(1):201–212, 2008.

[12] Y. Jiang, G. Li, and J. Feng. String similarity joins: An experimental
evaluation. PVLDB, 2014.

[13] Y. Kim and K. Shim. Efficient top-k algorithms for approximate
substring matching. In SIGMOD Conference, pages 385–396, 2013.

[14] C. Li, J. Lu, and Y. Lu. Efficient merging and filtering algorithms
for approximate string searches. In ICDE, pages 257–266, 2008.

[15] C. Li, B. Wang, and X. Yang. Vgram: Improving performance of
approximate queries on string collections using variable-length
grams. In VLDB, pages 303–314, 2007.

[16] G. Li, D. Deng, J. Wang, and J. Feng. Pass-join: A partition-based
method for similarity joins. PVLDB, 5(3):253–264, 2011.

[17] G. Li, J. He, D. Deng, and J. Li. Efficient similarity join and search
on multi-attribute data. In SIGMOD, pages 1137–1151, 2015.

[18] S. Liu, G. Li, and J. Feng. A prefix-filter based method for spatio-
textual similarity join. IEEE Trans. Knowl. Data Eng., 26(10):2354–
2367, 2014.

[19] J. Lu, C. Lin, W. Wang, C. Li, and H. Wang. String similarity
measures and joins with synonyms. In SIGMOD, pages 373–384,
2013.

[20] J. Qin, W. Wang, Y. Lu, C. Xiao, and X. Lin. Efficient exact
edit similarity query processing with the asymmetric signature
scheme. In SIGMOD Conference, pages 1033–1044, 2011.

[21] S. Sarawagi and A. Kirpal. Efficient set joins on similarity predi-
cates. In SIGMOD Conference, pages 743–754, 2004.

[22] K. Slabbekoorn, L. Hollink, and G.-J. Houben. Domain-aware
ontology matching. In The Semantic Web–ISWC 2012, pages 542–
558. Springer, 2012.

[23] V. Verroios and H. Garcia-Molina. Entity resolution with crowd
errors. In ICDE, pages 219–230, 2015.

[24] N. Vesdapunt, K. Bellare, and N. N. Dalvi. Crowdsourcing algo-
rithms for entity resolution. PVLDB, 7(12):1071–1082, 2014.

[25] J. Wang, T. Kraska, M. J. Franklin, and J. Feng. Crowder: Crowd-
sourcing entity resolution. PVLDB, 5(11):1483–1494, 2012.

[26] J. Wang, G. Li, D. Deng, Y. Zhang, and J. Feng. Two birds with one
stone: An efficient hierarchical framework for top-k and threshold-
based string similarity search. In ICDE, 2015.

[27] J. Wang, G. Li, and J. Feng. Trie-join: Efficient trie-based string
similarity joins with edit-distance constraints. PVLDB, 3(1):1219–
1230, 2010.

[28] J. Wang, G. Li, and J. Feng. Fast-join: An efficient method for
fuzzy token matching based string similarity join. In ICDE, pages
458–469, 2011.

[29] J. Wang, G. Li, and J. Feng. Can we beat the prefix filtering?: an
adaptive framework for similarity join and search. In SIGMOD
Conference, pages 85–96, 2012.

[30] J. Wang, G. Li, T. Kraska, M. J. Franklin, and J. Feng. Leveraging
transitive relations for crowdsourced joins. In SIGMOD, pages
229–240, 2013.

[31] X. Wang, X. Ding, A. K. H. Tung, and Z. Zhang. Efficient and
effective knn sequence search with approximate n-grams. In
PVLDB, volume 7, pages 1–12, 2014.

[32] S. E. Whang and H. Garcia-Molina. Joint entity resolution. In
ICDE, pages 294–305, 2012.

[33] S. E. Whang and H. Garcia-Molina. Incremental entity resolution
on rules and data. VLDB J., 23(1):77–102, 2014.

[34] S. E. Whang, D. Menestrina, G. Koutrika, M. Theobald, and
H. Garcia-Molina. Entity resolution with iterative blocking. In
SIGMOD, pages 219–232, 2009.

[35] Z. Wu and M. Palmer. Verbs semantics and lexical selection. In
Proceedings of the 32nd annual meeting on Association for Computa-
tional Linguistics, pages 133–138. Association for Computational
Linguistics, 1994.

[36] C. Xiao, W. Wang, and X. Lin. Ed-join: an efficient algorithm for
similarity joins with edit distance constraints. PVLDB, 1(1):933–
944, 2008.

[37] C. Xiao, W. Wang, X. Lin, and J. X. Yu. Efficient similarity joins for
near duplicate detection. In WWW, pages 131–140, 2008.

[38] X. Yang, Y. Wang, B. Wang, and W. Wang. Local filtering: Improv-
ing the performance of approximate queries on string collections.
In SIGMOD, pages 377–392, 2015.

[39] Z. Yang, J. Yu, and M. Kitsuregawa. Fast algorithms for top-k
approximate string matching. In AAAI, 2010.

[40] Z. Zhang, M. Hadjieleftheriou, B. C. Ooi, and D. Srivastava. Bed-
tree: an all-purpose index structure for string similarity search
based on edit distance. In SIGMOD, pages 915–926, 2010.

Zeyuan Shang is a student at Tsinghua Univer-
sity. He received his Bachelor Degree in Com-
puter Science from Tsinghua University, Beijing,
China in 2015. His research interests mainly in-
clude data cleaning and integration.

Yaxiao Liu is a PhD student at Tsinghua Uni-
versity. He got Bachelor Master degree in Com-
puter Science from Tsinghua University, Bei-
jing, China. His research interests mainly include
large-scale stream data management, and data
cleaning and integration.

Guoliang Li is currently working as an asso-
ciate professor in the Department of Computer
Science, Tsinghua University, Beijing, China.
He received his PhD degree in Computer Sci-
ence from Tsinghua University, Beijing, China in
2009. His research interests mainly include data
cleaning and integration, spatial databases, and
crowdsourcing.

Jianhua Feng received his B.S., M.S. and PhD
degrees in Computer Science from Tsinghua
University. He is currently working as a professor
of Department Computer Science in Tsinghua
University. His main research interests include
large-scale data management and analysis.

14

	Introduction
	Preliminaries
	Knowledge-Aware Similarity
	Knowledge-Aware Similarity For Elements
	Knowledge-Aware Similarity For Objects

	Knowledge-Aware Similarity Join
	Related Work

	The K-Join Framework
	Signature-Based Filtering
	Verification
	The K-Join Algorithm

	The Depth-Aware Filtering
	Path Signature for Elements
	Path Signature for Objects
	Path Prefix
	Weighted Path Prefix
	Path Prefix Based Filtering Algorithm

	Adaptive Verification
	Subgraph Matching
	Adaptive Verification
	Upper Bound Estimation
	Lower Bound Estimation
	Determining The Order of Subgraphs

	Extensions
	From Self Join to R-S Join
	Supporting Other Element Similarity Metrics
	Supporting Other Set Similarity Metrics
	Supporting One Element Matching Multiple Nodes
	Supporting DAG

	Experimental Study
	Experimental Setup
	Evaluation on Effectiveness
	Evaluation on Efficiency
	Evaluation on Filtering
	Evaluation on Verification
	Comparison with the State-of-the-art Method
	Evaluation on Scalability

	Conclusion
	References
	Biographies
	Zeyuan Shang
	Yaxiao Liu
	Guoliang Li
	Jianhua Feng

